首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the critical behavior of systems exhibiting a continuous absorbing phase transition in the presence of a conserved field coupled to the order parameter. The results obtained point out the existence of a new universality class of nonequilibrium phase transitions that characterizes a vast set of systems including conserved threshold transfer processes and stochastic sandpile models.  相似文献   

2.
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.  相似文献   

3.
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.  相似文献   

4.
We describe the construction of a conserved reaction-diffusion system that exhibits self-organized critical (avalanche-like) behavior under the action of a slow addition of particles. The model provides an illustration of the general mechanism to generate self-organized criticality in conserving systems. Extensive simulations in d = 2 and 3 reveal critical exponents compatible with the universality class of the stochastic Manna sandpile model. Received 16 November 2000  相似文献   

5.
We introduce an order parameter for dynamical arrest. Dynamically available volume (unoccupied space that is available to the motion of particles) is expressed as holes for the simple lattice models we study. Near the arrest transition the system is dilute in holes, so we expand dynamical quantities in a series of hole density. Unlike the situation when presented in particle density, all cases of simple models that we examine have a quadratic dependence of the diffusion constant on hole density. This observation implies that in certain regimes ideal dynamical arrest transitions may possess a hitherto unnoticed degree of universality.  相似文献   

6.
We study diffusion of (fluorescently) tagged hard-core interacting particles of finite size in a finite one-dimensional system. We find an exact analytical expression for the tagged particle probability density function using a Bethe ansatz, from which the mean square displacement is calculated. The analysis shows the existence of three regimes of drastically different behavior for short, intermediate, and large times. The results are in excellent agreement with stochastic simulations (Gillespie algorithm).  相似文献   

7.
Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135 (2011)] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate for extremely corrugated geometries compared with the common applied method using a spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.  相似文献   

8.
《中国物理 B》2021,30(10):100510-100510
Collective motion of active particles with polar alignment is investigated on a sphere. We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion. In the model, we added a polar alignment strength, along with Gaussian curvature, affecting particles swarm motion. We find that when the force exceeds a certain limit, the order parameter will decrease with the increase of the force. Combined with our definition of order parameter and observation of the model, the reason is that particles begin to move side by side under the influence of polar forces. In addition, the effects of velocity, rotational diffusion coefficient, and packing fraction on particle swarm motion are discussed. It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles, while the velocity has little influence on the clustering motion of particles.  相似文献   

9.
颗粒堆内微观力学结构的离散元模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵永志  江茂强  徐平  郑津洋 《物理学报》2009,58(3):1819-1825
将离散单元法应用到三维堆积过程的模拟计算,探讨了滑动摩擦及滚动摩擦对堆积形成的影响,得到了颗粒堆内部的应力分布规律,发现颗粒堆的形态是由滑动摩擦和滚动摩擦共同决定的,在堆内颗粒间的作用力基本呈树状结构.在模拟得到的颗粒堆中出现了应力分布奇异现象,在堆积角较大的情况下,颗粒堆与地面间作用力的最大值常发生在距堆底中心不远的环状区域,而并非发生在堆底的中心;在堆积角相对较小时颗粒堆与地面间作用力的最大值较容易发生在堆底的中心.对于一个颗粒堆,具体会发生哪种受力情况具有一定的偶然性. 关键词: 堆积 离散单元法 计算颗粒力学  相似文献   

10.
With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles.  相似文献   

11.
The results of an experimental investigation into the effects of particle shape on the stress dip formed under a 2D sandpile is reported. We find good agreement with previous results of a small dip for mixtures of disks poured from a localized source. The new finding is that the dip is significantly enhanced when elliptical particles are used. We attribute the amplification of the effect to orientational ordering induced by the shape of the grains which removes the degeneracy of circular particles.  相似文献   

12.
《Physica A》2006,363(2):299-306
We study the distributions of dissipative and nondissipative avalanches separately in the stochastic Zhang (SP-Z) sandpile in two dimension. We find that dissipative and nondissipative avalanches obey simple power laws and do not have the logarithmic correction, while the avalanche distributions in the Abelian Manna model should include a logarithmic correction. We use the moment analysis to determine the numerical critical exponents of dissipative and nondissipative avalanches, respectively, and find that they are different from the corresponding values in the Abelian Manna model. All these indicate that the stochastic Zhang model and the Abelian Manna model belong to distinct universality classes, which imply that the Abelian symmetry breaking changes the scaling behavior of the avalanches in the case of the stochastic sandpile model.  相似文献   

13.
An analytical investigation is made on two-dimensional traffic-flow model with alternative movement and exclude-volume effect between right and up arrows. Several exact results are obtained, including the upper critical density above which there are only jamming configurations, and the lower critical density below which there are only moving configurations. The observed jamming transition takes place at another critical density pc(N), which is in the intermediate region between the lower and upper critical densities. This transition is suggested to be a second-order phase transition, the order parameter is found. The nature of self-organization, ergodicity breaking and synchronization are discussed. Comparison with the sandpile model is made.  相似文献   

14.
《Physics letters. A》2006,359(5):349-356
We demonstrate the equivalence of a non-Markovian evolution equation with a linear memory-coupling and a Fokker–Planck equation (FPE). In case the feedback term offers a direct and permanent coupling of the current probability density to an initial distribution, the corresponding FPE offers a non-trivial drift term depending itself on the diffusion parameter. As the consequence the deterministic part of the underlying Langevin equation is likewise determined by the noise strength of the stochastic part. This memory induced stochastic behavior is discussed for different, but representative initial distributions. The analytical calculations are supported by numerical results.  相似文献   

15.
We construct a stochastic mechanics by replacing Bohm‧s first-order ordinary differential equation of motion with a stochastic differential equation where the stochastic process is defined by the set of Bohmian momentum time histories from an ensemble of particles. We show that, if the stochastic process is a purely random process with n-th order joint probability density in the form of products of delta functions, then the stochastic mechanics is equivalent to quantum mechanics in the sense that the former yields the same position probability density as the latter. However, for a particular non-purely random process, we show that the stochastic mechanics is not equivalent to quantum mechanics. Whether the equivalence between the stochastic mechanics and quantum mechanics holds for all purely random processes but breaks down for all non-purely random processes remains an open question.  相似文献   

16.
We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick’s law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes. We also study some properties of the crossing time and compute the Milne extrapolation length in dependence on the shape of the random tube.  相似文献   

17.
We study the rotor router model and two deterministic sandpile models. For the rotor router model in ℤ d , Levine and Peres proved that the limiting shape of the growth cluster is a sphere. For the other two models, only bounds in dimension 2 are known. A unified approach for these models with a new parameter h (the initial number of particles at each site), allows to prove a number of new limiting shape results in any dimension d≥1. For the rotor router model, the limiting shape is a sphere for all values of h. For one of the sandpile models, and h=2d−2 (the maximal value), the limiting shape is a cube. For both sandpile models, the limiting shape is a sphere in the limit h→−∞. Finally, we prove that the rotor router shape contains a diamond.  相似文献   

18.
Fu-Jun Lin 《中国物理 B》2022,31(3):36401-036401
We numerically study the phase behaviors of colloids with anisotropic diffusion in two dimensions. It is found that the diffusion anisotropy of colloidal particles plays an important role in the phase transitions. A strong diffusion anisotropy induces the large vibration of particles, subsequently, the system goes into a disordered state. In the presence of the strong-coupling, particles with weak diffusion anisotropy can freeze into hexagonal crystals. Thus, there exists a solid-liquid transition. With the degree of diffusion anisotropy increasing, the transition points are shifted to the stronger-coupled region. A competition between the degree of diffusion anisotropy and coupling strength widens the transition region where the heterogeneous structures coexist, which results in a broad-peak probability distribution curve for the local order parameter. Our study may be helpful for the experiments related to the phase behavior in statistical physics, materials science and biophysical systems.  相似文献   

19.
We discuss some dynamic properties of the segregation in vertically vibrated binary granular mixtures with the same size. We present a method that can accurately calculate the order parameter in the simulation. By use of the time evolution of the order parameter, we have found that the convergence of the segregated state depends at least on the vibration amplitude, the total mass of the particles, and also the density difference between the lighter and heavier particles.The convergence is quicker for larger vibration amplitude, lighter total mass of the particles and more density difference between the lighter and heavier particles. We have also found that thefluctuation is larger even after the steady state is reached for lighter total mass of the particles and less density difference between the lighter and heavier particles.  相似文献   

20.
We study the steady state of the Abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their Abelian algebra to determine their eigenvalues, and the Jordan block structure. These are then used to determine the probability of different configurations in the steady state. We illustrate this procedure by explicitly determining the numerically exact steady state for a one dimensional example, for systems of size ≤12, and also study the density profile in the steady state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号