首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
常恒心  许铮  姚伟鹏  谢雨  乔宾 《计算物理》2017,34(5):526-542
新一代拍瓦激光装置有望将激光强度提升至1023~1024 W·cm-2,在此极端强场条件下非线性量子电动力学效应对等离子体动力学过程产生重要影响.相对论电子在强电磁场作用下会同步辐射大量伽马光子,当后者穿过超强电磁场时会级联产生正负电子对.与此同时,这些量子电动力学效应也会反作用于激光等离子体相互作用过程,如辐射阻尼严重影响电子运动过程.为了研究这样极端的等离子体动力学,我们介绍最近几年发展的量子电动力学数值模拟模块,并将其耦合到传统的粒子模拟程序中,即量子电动力学-粒子模拟程序.由于大量新辐射的光子和产生的正负电子对会造成模拟粒子数目的不断增加,我们发展了粒子融合技术来减小模拟规模.利用此量子电动力学-粒子模拟程序,我们对极端强场激光物质相互作用以及极端天体物理现象开展了数值模拟研究.  相似文献   

2.
The prospect of next-generation ultra-high-intensity laser sources has prompted recent renewed study of nonlinear QED processes, such as the Schwinger effect, in which the instability of the QED vacuum is probed by external fields. Experimental observation of these nonlinear QED effects would provide unprecedented controlled access to non-perturbative processes in quantum field theory under extreme conditions, which is of direct interest in particle physics and astrophysical applications. I summarize important theoretical issues, both conceptual and computational, related to these nonlinear QED effects.  相似文献   

3.
In vacuum high-intensity lasers can cause photon–photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon–photon interaction is polarization-mediated described by the Euler–Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.  相似文献   

4.
Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.  相似文献   

5.
Refractive processes in strong-field QED are pure quantum processes, which involve only external photons and the background electromagnetic field. We show analytically that such processes occurring in a plane-wave field and involving external real photons are all characterized by a surprisingly modest net exchange of energy and momentum with the laser field, corresponding to a few laser photons, even in the limit of ultra-relativistic laser intensities. We obtain this result by a direct calculation of the transition matrix element of an arbitrary refractive QED process and accounting exactly for the background plane-wave field. A simple physical explanation of this modest net exchange of laser photons is provided, based on the fact that the laser field couples with the external photons only indirectly through virtual electron–positron pairs. For stronger and stronger laser fields, the pairs cover a shorter and shorter distance before they annihilate again, such that the laser can transfer to them an energy corresponding to only a few photons. These results can be relevant for the future experiments aiming to test strong-field QED at present and next-generation facilities.  相似文献   

6.
Abstract

Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many “paradoxes” and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random “zero point radiation” is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, “self field” electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can “interact with themselves” in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: “evanesccent radiation”, “virtual photons”, and “vacuum fluctuations”. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.  相似文献   

7.
We present two Penning trap experiments concerned with different aspects of the physics of extreme electromagnetic fields, the ARTEMIS experiment designed for bound-electron magnetic moment measurements in the presence of the extremely strong fields close to the nucleus of highly charged ions, and the HILITE experiment, in which well-defined ion targets are to be subjected to high-intensity laser fields.  相似文献   

8.
Quantum electrodynamics (QED) predicts that electromagnetic fields interact with each other in vacuum. We study the possibility of revealing this interaction experimentally with intensities on the order of 1024–1026 W/cm2, which may be available in the next generation of laser systems. In particular, we investigate high-order harmonic generation in vacuum via the collision of two ultrastrong counterpropagating laser pulses. The experimental feasibility of the related process of stimulated light-by-light scattering is also examined. Finally, the importance of including diffractive effects to describe the nonlinear interaction between an x-ray probe and a strong, focused optical standing wave is pointed out.  相似文献   

9.
With examples of two parallel dielectric gratings and two arrays of thin parallel dielectric cylinders, it is shown that the interaction between trapped electromagnetic modes can lead to scattering resonances with practically zero width. Such resonances are the bound states in the radiation continuum first discovered in quantum systems by von Neumann and Wigner. Potential applications of such photonic systems include: large amplification of electromagnetic fields within photonic structures and, hence, enhancement of nonlinear phenomena, biosensing, as well as perfect filters and waveguides for a particular frequency, and impurity detection.  相似文献   

10.
11.
We suggest an experiment to observe vacuum birefringence induced by intense laser fields. A high-intensity laser pulse is focused to ultra-relativistic intensity and polarizes the vacuum which then acts like a birefringent medium. The latter is probed by a linearly polarized X-ray pulse. We calculate the resulting ellipticity signal within strong-field QED assuming Gaussian beams. The laser technology required for detecting the signal will be available within the next three years.  相似文献   

12.
The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics(QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame.We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.  相似文献   

13.
高功率超短超强激光脉冲的诞生开启了相对论非线性光学、高强场物理、新型激光聚变、实验室天体物理等前沿领域.近年来,随着数拍瓦级乃至更高峰值功率激光装置的建成,超强激光与等离子体相互作用进入到一个全新的高强场范畴.这种极强激光场与等离子体相互作用蕴含着丰富的物理过程,除了经典的波与粒子作用、相对论效应、有质动力效应等非线性物理过程外,量子电动力学(QED)效应变得格外重要,例如辐射阻尼效应、正负电子对产生、强伽马射线辐射、QED级联、真空极化等.本文主要介绍我们近年来在极端强激光场与等离子体相互作用中激发的QED效应以及伴随的超亮强伽马射线辐射和稠密正负电子对产生等方面的研究进展.  相似文献   

14.
In view of the increasingly stronger available laser fields it is becoming feasible to employ them to probe the nonlinear dielectric properties of the vacuum as predicted by quantum electrodynamics (QED) and to test QED in the presence of intense laser beams. First, we discuss vacuum-polarization effects that arise in the collision of a high-energy proton beam with a strong laser field. In addition, we investigate the process of light-by-light diffraction mediated by the virtual electron-positrons of the vacuum. A strong laser beam “diffracts” a probe laser field due to vacuum polarization effects, and changes its polarization. This change of the polarization is shown to be in principle measurable. Also, the possibility of generating harmonics by exploiting vacuum-polarization effects in the collision in vacuum of two ultra-strong laser beams is discussed. Moreover, when two strong parallel laser beams collide with a probe electromagnetic field, each photon of the probe may interact through the “polarized” quantum vacuum with the photons of the other two fields. Analogously to “ordinary” double-slit set-ups involving matter, the vacuum-scattered probe photons produce a diffraction pattern, which is the envisaged observable to measure the quantum interaction between the probe and strong field photons. We have shown that the diffraction pattern becomes visible in a few operating hours, if the strong fields have an intensity exceeding 1024W/cm2.  相似文献   

15.
A laboratory experiment for the study of nonlinear interaction of electromagnetic waves in vacuum is proposed. The basic idea of the experiment is as follows. If one separates a certain region of the circuit in a ring laser from the remaining part with gas-impenetrable partitions, evacuates it, and forms external electromagnetic fields there, the oscillation frequencies and the polarization states of the electromagnetic waves traveling in this ring laser in counter directions are different. A calculation is made for the oscillation frequencies of electromagnetic waves traveling in a ring laser in opposite directions in the case when they interact in an evacuated section of the ring laser circuit with intense laser radiation. It is shown that the effect can be observed in experiments using presently available pulsed lasers of ultrahigh power.  相似文献   

16.
We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities. Finally, the corrections due to the birefringent nature of the QED vacuum at such ultrahigh fields are discussed.  相似文献   

17.
We give a non-technical overview of QED effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility.  相似文献   

18.
We present for the first time the nonlinear dynamics of quantum electrodynamic (QED) photon splitting in a strongly magnetized electron-positron (pair) plasma. By using a QED corrected Maxwell equation, we derive a set of equations that exhibit nonlinear couplings between electromagnetic (EM) waves due to nonlinear plasma currents and QED polarization and magnetization effects. Numerical analyses of our coupled nonlinear EM wave equations reveal the possibility of a more efficient decay channel, as well as new features of energy exchange among the three EM modes that are nonlinearly interacting in magnetized pair plasmas. Possible applications of our investigation to astrophysical settings, such as magnetars, are pointed out.  相似文献   

19.
Quantum steering has attracted great interest in the last decade, especially in the celebrated optomechanical, cold atom, and quantum optical systems. However, there is still a lack of studies on quantum steering in circuit quantum electrodynamics (QED), which provides a useful experimental platform for revealing novel quantum phenomena. In this work, we investigate the steering of qubit by continuous weak measurement in a circuit QED system and establish a set of multiplicative steering inequalities based on the Heisenberg uncertainty principle. Different from the widely studied systems mentioned above, multiplicative steering inequalities in the circuit QED system are in various forms. We find that only a portion of them can be used to show the detection dependence of the qubit state and we also analyze the reason. Furthermore, we discuss several conditions for the violation of a typical steering inequality, including the measurement strength and methods in detecting the cavity field as well as the quantum efficiency of the detector. This preliminary work could be helpful to quantum steering experiments in circuit QED systems.  相似文献   

20.
Since the work of Sauter, and Heisenberg, Euler and Köckel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The extreme light infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号