首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Let \({S\subset\mathbb{R}^2}\) be a bounded Lipschitz domain and denote by \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\) the set of mappings \({u\in W^{2,2}(S;\mathbb{R}^3)}\) which satisfy \({(\nabla u)^T(\nabla u) = Id}\) almost everywhere. Under an additional regularity condition on the boundary \({\partial S}\) (which is satisfied if \({\partial S}\) is piecewise continuously differentiable), we prove that the strong W 2,2 closure of \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)\cap C^{\infty}(\overline{S};\mathbb{R}^3)}\) agrees with \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\).  相似文献   

3.
Given bounded vector field \({b : {\mathbb{R}^{d}} \to {\mathbb{R}^{d}}}\), scalar field \({u : {\mathbb{R}^{d}} \to {\mathbb{R}}}\), and a smooth function \({\beta : {\mathbb{R}} \to {\mathbb{R}}}\), we study the characterization of the distribution \({{\rm div}(\beta(u)b)}\) in terms of div b and div(ub). In the case of BV vector fields b (and under some further assumptions), such characterization was obtained by L. Ambrosio, C. De Lellis and J. Malý, up to an error term which is a measure concentrated on the so-called tangential set of b. We answer some questions posed in their paper concerning the properties of this term. In particular, we construct a nearly incompressible BV vector field b and a bounded function u for which this term is nonzero. For steady nearly incompressible vector fields b (and under some further assumptions), in the case when d = 2, we provide complete characterization of div(\({\beta(u)b}\)) in terms of div b and div(ub). Our approach relies on the structure of level sets of Lipschitz functions on \({{\mathbb{R}^{2}}}\) obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique, we obtain new sufficient conditions when any bounded weak solution u of \({\partial_t u + b \cdot \nabla u=0}\) is renormalized, that is when it also solves \({\partial_t \beta(u) + b \cdot \nabla \beta(u)=0}\) for any smooth function \({\beta \colon{\mathbb{R}} \to {\mathbb{R}}}\). As a consequence, we obtain new a uniqueness result for this equation.  相似文献   

4.
We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\)) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.  相似文献   

5.
In this paper, we construct linearly stable quasi-periodic breathers for the Hamiltonian systems in the form \({{\rm i} \dot{q}_n+v_n q_n+\delta|q_n|^2q_n+\varepsilon_n \left(q_{n+1}+q_{n-1} \right)=0,\quad n \in \mathbb{Z}}\) where \({\{v_n\}_{n \in \mathbb{Z}}}\) is a family of time independent identically distributed (i.i.d) random variables with common distribution \({g = dv_n, v_n \in [0,1]}\) and \({|\varepsilon_n| \leq \varepsilon e^{-\varrho |n|}}\) with \({\varepsilon,\varrho > 0}\) . We prove that for \({\varepsilon, \delta}\) sufficiently small, the equation admits a family of small-amplitude and linearly stable, time quasi-periodic solutions for most of the parameters \({\{v_n\}_{n \in \mathbb{Z}}}\) .  相似文献   

6.
We focus on a special type of domain wall appearing in the Landau–Lifshitz theory for soft ferromagnetic films. These domain walls are divergence-free \({\mathbb{S}^2}\)-valued transition layers that connect two directions \({m_\theta^\pm \in \mathbb{S}^2}\) (differing by an angle \({2\theta}\)) and minimize the Dirichlet energy. Our main result is the rigorous derivation of the asymptotic structure and energy of such “asymmetric” domain walls in the limit \({\theta \downarrow 0}\). As an application, we deduce that a supercritical bifurcation causes the transition from symmetric to asymmetric walls in the full micromagnetic model.  相似文献   

7.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

8.
For arbitrary polynomial loading and a sufficient finite number of nodal points N, the solution for the 3D Timoshenko beam differential equations is polynomial and given as \({{\varvec \theta} = \sum_{i=1}^N I_i {\varvec \theta}_i}\) for the rotation field and \({{\bf u} = \sum_{i=1}^{N+1} J_i {\bf u}_i}\) for the displacement field, where I i and J i are the Lagrangian polynomials of order N?1 and N, respectively. It has been demonstrated in this work that the exact solution for the displacement field may be also written in a number of alternative ways involving contributions of the nodal rotations including \({{\bf u} = \sum_{i=1}^N I_i \left[ {\bf u}_i + \frac 1 N ( {\varvec \theta} - {\varvec \theta}_i ) \times {\bf R}_i \right]}\), where R i are the beam nodal positions.  相似文献   

9.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

10.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

11.
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size \({\varepsilon}\) separated by distances \({d_{\varepsilon}}\) and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of \({\frac{d_{\varepsilon}}\varepsilon}\) when \({\varepsilon}\) goes to zero. If \({\frac{d_{\varepsilon}}\varepsilon \to \infty}\), then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, \({\frac{d_{\varepsilon}}\varepsilon \to 0}\), then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}\) where \({\gamma \in (0,\infty]}\) is related to the geometry of the lateral boundaries of the obstacles. If \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}\), then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to \({\varepsilon^{3}}\) for balls.  相似文献   

12.
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation \(u=(u_{1}, \ldots, u_{N})\):
$$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$
where \({\mathbf {X}}\) is a finite, open, symmetric \(N\)-annulus (with \(N \ge2\)), \(\mathscr{P}=\mathscr{P}(x)\) is an unknown hydrostatic pressure field and \(\varphi\) is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when \(N=3\), the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when \(N=2\), the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions \(N \ge4\) and discuss a number of closely related issues.
  相似文献   

13.
Regarding P.-L. Lions’ open question in Oxford Lecture Series in Mathematics and its Applications, Vol. 3 (1996) concerning the propagation of regularity for the density patch, we establish the global existence of solutions to the two-dimensional inhomogeneous incompressible Navier–Stokes system with initial density given by \({(1 - \eta){\bf 1}_{{\Omega}_{0}} + {\bf 1}_{{\Omega}_{0}^{c}}}\) for some small enough constant \({\eta}\) and some \({W^{k+2,p}}\) domain \({\Omega_{0}}\), with initial vorticity belonging to \({L^{1} \cap L^{p}}\) and with appropriate tangential regularities. Furthermore, we prove that the regularity of the domain \({\Omega_0}\) is preserved by time evolution.  相似文献   

14.
15.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

16.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

17.
We prove global well-posedness for instationary Navier–Stokes equations with initial data in Besov space \({B^{0}_{n,\infty}(\Omega)}\) in whole and half space, and bounded domains of \({{\mathbb R}^{n}}\), \({n \geq 3}\). To this end, we prove maximal \({L^{\infty}_{\gamma}}\) -regularity of the sectorial operators in some Banach spaces and, in particular, maximal \({L^{\infty}_{\gamma}}\) -regularity of the Stokes operator in little Nikolskii spaces \({b^{s}_{q,\infty}(\Omega)}\), \({s \in (-1, 2)}\), which are of independent significance. Then, based on the maximal regularity results and \({b^{s_{1}}_{q_{1},\infty}-B^{s_{2}}_{q_{2,1}}}\) estimates of the Stokes semigroups, we prove global well-posedness for Navier–Stokes equations under smallness condition on \({\|u_{0}\|_{B^{0}_{n,\infty}(\Omega)}}\) via a fixed point argument using Banach fixed point theorem.  相似文献   

18.
We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset \({\mathcal{D}}\) of two-dimensional Euclidean point space \(\mathbb{E}^{2}\) into a surface \({\mathcal{S}}\) in three-dimensional Euclidean point space \(\mathbb{E}^{3}\). To be isometric, such a deformation must preserve the length of every possible arc of material points on \({\mathcal{D}}\). Characterizing the curves of zero principal curvature of \({\mathcal{S}}\) is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in \(\mathbb{E}^{2}\), based upon an à priori chosen pre-image form of the curves of zero principal curvature in \({\mathcal{D}}\), and use that coordinate system to construct the most general isometric deformation of \({\mathcal{D}}\) to a smooth surface \({\mathcal{S}}\). A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of \({\mathcal{S}}\) are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015).  相似文献   

19.
Let \({f: U\rightarrow {\mathbb R}^2}\) be a continuous map, where U is an open subset of \({{\mathbb R}^2}\). We consider a fixed point p of f which is neither a sink nor a source and such that {p} is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations \({\{{\rm ind}(f^n,p)\}_{n=1}^\infty}\) is periodic, bounded from above by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem (Annals of Math., 146, 241–293 (1997)) onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.  相似文献   

20.
We construct a Sobolev homeomorphism in dimension \({n \geqq 4,\,f \in W^{1,1}((0, 1)^n,\mathbb{R}^n)}\) such that \({J_f = {\rm det} Df > 0}\) on a set of positive measure and J f  < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that \({f_k\to f}\) in \({W^{1,1}_{\rm loc}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号