首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Results of an experimental study of the laminar-turbulent transition in a hypersonic flow around cones with different bluntness radii at a zero angle of attack, free-stream Mach number M = 6, and unit Reynolds number in the interval Re ,1 = 5.79 · 106–5.66 · 107 m?1 are presented. Flow regimes in which a reverse of the laminar-turbulent transition (decrease in the length of the laminar segment with increasing bluntness radius) are studied. Heat flux distributions over the model surface are obtained with the use of temperature-sensitive paints. Lines of the beginning of the transition in the boundary layer are analyzed by using heat flux fields. The critical Reynolds number Re ∞,R ≈ 1.3 · 105 beginning from which the laminar-turbulent transition substantially depends on uncontrolled disturbances, such as the model tip roughness, is found. In supercritical regimes, the line of the transition beginning is shifted in most cases toward the model tip (reverse of the transition). The results obtained are compared with available experimental data.  相似文献   

2.
In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under‐resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high‐order spectral methods by using high‐order ansatz functions up to 12th order. We employ polynomial de‐aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high‐order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The stability of the laminar helical flow of pseudoplastic liquids has been investigated with an indirect method consisting in the measurement of the rate of mass transfer at the surface of the inner rotating cylinder. The experiments have been carried out for different values of the geometric parameter = R 1/R 2 (the radius ratio) in the range of small values of the Reynolds number,Re < 200. Water solutions of CMC and MC have been used as pseudoplastic liquids obeying the power law model. The results have been correlated with the Taylor and Reynolds numbers defined with the aid of the mean viscosity value. The stability limit of the Couette flow is described by a functional dependence of the modified critical Taylor number (including geometric factor) on the flow indexn. This dependence, general for pseudoplastic liquids obeying the power law model, is close to the previous theoretical predictions and displays destabilizing influence of pseudoplasticity on the rotational motion. Beyond the initial range of the Reynolds numbers values (Re>20), the stability of the helical flow is not affected considerably by the pseudoplastic properties of liquids. In the range of the monotonic stabilization of the helical flow the stability limit is described by a general dependence of the modified Taylor number on the Reynolds number. The dependence is general for pseudoplastic as well as Newtonian liquids.Nomenclature C i concentration of reaction ions, kmol/m3 - d = R 2R 1 gap width, m - F M () Meksyn's geometric factor (Eq. (1)) - F 0 Faraday constant, C/kmol - i l density of limit current, A/m3 - k c mass transfer coefficient, m/s - n flow index - R 1,R 2 inner, outer radius of the gap, m - Re = V m ·2d·/µ m Reynolds number - Ta c = c ·d3/2·R 1 1/2 ·/µ m Taylor number - Z i number of electrons involved in electrochemical reaction - = R 1/R 2 radius ratio - µ apparent viscosity (local), Ns/m2 - µ m mean apparent viscosity value (Eq. (3)), Ns/m2 - µ i apparent viscosity value at a surface of the inner cylinder, Ns/m2 - density, kg/m3 - c angular velocity of the inner cylinder (critical value), 1/s  相似文献   

5.
The effect of the jet-to-cross-flow velocity ratio, R, on the turbulent wake and Kármán vortex shedding for a cylindrical stack of aspect ratio AR=9 was investigated in a low-speed wind tunnel using thermal anemometry. The cross-flow Reynolds number was ReD=2.3×104, the jet Reynolds number ranged from Red=7.6×103 to 4.7×104, and R was varied from 0 to 3. The stack was partially immersed in a flat-plate turbulent boundary layer, with a boundary layer thickness-to-stack-height ratio of δ/H=0.5 at the location of the stack. From the behaviour of the turbulent wake and the vortex shedding, the flow around the stack could be classified into three regimes depending on the value of R, which were the downwash (R<0.7), cross-wind-dominated (0.7R<1.5), and jet-dominated (R1.5) flow regimes. Each flow regime had a distinct structure to the mean velocity (streamwise and wall-normal directions), turbulence intensity (streamwise and wall-normal directions), and Reynolds shear stress fields, as well as the variation of the Strouhal number and the power spectrum along the stack height.  相似文献   

6.
We visualized the wake structure of circular disks falling vertically in quiescent water.The evolution of the wake was shown to be similar to the flow patterns behind a fixed disk.The Reynolds number,Re = Ud/ν,is in the range of 40 200.With the ascension of Reynolds numbers,a regular bifurcation occurred at the first critical Reynolds number Re c 1,leading to a transition from an axisymmetric wake structure to a plane symmetric one;A Hopf bifurcation took place at the second critical Reynolds number Re c 2,as the wake structure became unsteady.Plane symmetry of the wake structure was first lost as periodic vortex shedding appeared,but recovered at higher Reynolds number.The difference between the two critical Reynolds numbers was found to be shape-dependent,as we compared our results for thin discs with those for other falling bodies,such as spheres and cones.This observation could be understood in terms of the instability mechanism of the vortical structure.  相似文献   

7.
Abstract

A new eigenvalue search procedure using the Chebyshev pseudospectral technique has been developed for the solution of the Orr-Sommerfeld equations. It can deal accurately and flexibly with various velocity profiles. The axisymmetric linear instability characteristics oflhe annular Hagen-Poiseuille Bow have been studied with this procedure. Neutral curves were obtained for 1 > R = R1/R0 > 0.06 where Rl is the inner radius and R0 is the outer radius. When R = 1 which is the plane Poiseuille flow, the corresponding critical Reynolds number is 5772.22 αr; = 1.0209. As R decreases to 0.06, the critical Reynolds number increases to 2.6 × 106 and the wave speed decreases to 0.0573. The wavenumber first decreases gradually from a, = 1.0209 at R = 1.0 to α r, = 0.90 at R = 0.3. and then it increases rapidly to α r, = 1.73 at R = 0.06.  相似文献   

8.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

9.
 The mixing length theory is employed to simulate the fully developed turbulent heat transfer in annular-sector ducts with five apex angles (θ0=18,20,24,30,40) and four radius ratios (R o/R i=2,3,4,5). The Reynolds number range is 104105. The numerical results agree well with an available correlation which was obtained in following parameter range: θ0=18,20,24,30,40, R o/R i=4 and Re=1045×104. The present work demonstrates that the application range of the correlation can be much extended. Apart from the mixing length theory, the kɛ model with wall function and the Reynolds stress model are also employed. None of the friction factor results predicted by the three models agrees well with the test data. For the heat transfer prediction the mixing length theory seems the best for the cases studied. Received on 17 July 2000 / Published online: 29 November 2001  相似文献   

10.
The transitional turbulent regime in confined flow between a rotating and a stationary disc is studied using direct numerical simulation. Besides its fundamental importance as a three-dimensional prototype flow, such flows frequently arise in many industrial devices, especially in turbomachinary applications. The present contribution extends the DNS simulation into the turbulent flow regime, to a rotational Reynolds number Re =3 × 105. An annular rotor-stator cavity of radial extension ΔR and height H, is considered with L = 4.72(L = ΔR/H) and Rm = 2.33 (Rm = (R 1+ R 0)/ΔR). The direct numerical simulation is performed by integrating the time-dependent Navier–Stokes equations until a statistically steady state is reached. A three-dimensional spectral method is used with the aim of providing both very accurate instantaneous fields and reliable statistical data. The instantaneous quantities are analysed in order to enhance our knowledge of the physics of turbulent rotating flows. Also, the results have been averaged so as to provide target turbulence data for any subsequent modelling attempts at reproducing the flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

12.
An experimental study on the flow of non-Newtonian fluids around a cylinder was undertaken to identify and delimit the various shedding flow regimes as a function of adequate non-dimensional numbers. The measurements of vortex shedding frequency and formation length (lf) were carried out by laser-Doppler anemometry in Newtonian fluids and in aqueous polymer solutions of CMC and tylose. These were shear thinning and elastic at weight concentrations ranging from 0.1 to 0.6%. The 10 and 20 mm diameter cylinders (D) used in the experiments had aspect ratios of 12 and 6 and blockage ratios of 5 and 10%, respectively. The Reynolds number (Re*) was based on a characteristic shear rate of U/(2D) and ranged from 50 to 9×103 thus encompassing the laminar shedding, the transition and shear-layer transition regimes. Increasing fluid elasticity reduced the various critical Reynolds numbers (Reetr*, Relf*, Rebbp*) and narrowed the extent of the transition regime. For the 0.6% tylose solution the transition regime was even suppressed. On the other end, pseudoplasticity was found to be indirectly responsible for the observed reduction in Reotr*: it increases the Strouhal number which in turn increases the vortex filaments, precursors of the transition regime. Elasticity was better quantified by the elasticity number Re′/We than by the Weissenberg number. This elasticity number involves the calculation of the viscosity at a high characteristic shear rate, typical of the boundary layer, rather than at the average value (U/(2D)) used for the Reynolds number, Re*.  相似文献   

13.
We present a novel approach to wall modeling for the Reynolds‐averaged Navier‐Stokes equations within the discontinuous Galerkin method. Wall functions are not used to prescribe boundary conditions as usual, but they are built into the function space of the numerical method as a local enrichment, in addition to the standard polynomial component. The Galerkin method then automatically finds the optimal solution among all shape functions available. This idea is fully consistent and gives the wall model vast flexibility in separated boundary layers or high adverse pressure gradients. The wall model is implemented in a high‐order discontinuous Galerkin solver for incompressible flow complemented by the Spalart‐Allmaras closure model. As benchmark examples, we present turbulent channel flow starting from Reτ=180 and up to Reτ=100000 as well as flow past periodic hills at Reynolds numbers based on the hill height of ReH=10595 and ReH=19000.  相似文献   

14.
Data collected from several studies of experimental and numerical nature in wall-bounded turbulent flows and in particular in internal flows (channel and pipe flows, Mochizuki and Nieuwstadt [1]) at different Reynolds numbers R +(Ru */ν), indicate that: (i) the peak of the rms-value (normalized by u *) of the streamwise velocity fluctuations (σ u +|peak) is essentially independent of the Reynolds number, (ii) the position of the rms peak value (y +|peak) is weakly dependent of the Reynolds number, (iii) the skewness of the streamwise velocity fluctuations (S u ) is close to zero at the position in which the variance has its peak. A series of measurements of streamwise velocity fluctuations has been performed in turbulent pipe flow with the use of an Ultrasonic Doppler Velocimeter and our results support those reported in [1]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In this second part of our analysis of the destabilization of transverse modes in an extended horizontal layer of a saturated porous medium with inclined temperature gradient and vertical throughflow, we apply the mathematical formalism of absolute and convective instabilities to studying the nature of the transition to instability of such modes by assuming on physical grounds that the transition is triggered by growing localized wavepackets. It is revealed that in most of the parameter cases treated in the first part of the analysis (Brevdo and Ruderman 2009), at the transition point the evolving instability is convective. Only in the cases of zero horizontal thermal gradient, and in the cases of zero vertical throughflow and the horizontal Rayleigh number R h < 49, the instability is absolute implying that, as the vertical Rayleigh number, R v, increases passing through its critical value, R vc, the destabilization tends to affect the base state throughout and eventually destroys it at every point in space. For the parameter values considered, for which the destabilization has the nature of convective instability, we found that, as R v, increases beyond the critical value, while the horizontal Rayleigh number, R h, and the Péclet number, Q v, are kept fixed, the flow experiences a transition from convective to absolute instability. The values of the vertical Rayleigh number, R v, at the transition from convective to absolute instability are computed. For convectively unstable, but absolutely stable cases, the spatially amplifying responses to localized oscillatory perturbations, i.e., signaling, are treated and it is found that the amplification is always in the direction of the applied horizontal thermal gradient.  相似文献   

16.
Direct numerical simulations have proven of inestimable help to our understanding of the transition to turbulence in wall-bounded flows. While the dynamics of the transition from laminar flow to turbulence via localised spots can be investigated with reasonable computing resources in the domains of limited extent, the study of the decay of turbulence in conditions approaching those in the laboratory requires the consideration of domains so wide as to exclude the recourse to fully resolved simulations. Using Gibson’s C++ code Channel-Flow, we scrutinise the effects of a controlled lowering of the numerical resolution on the decay of turbulence in-plane Couette flow at a quantitative level. We show that the number of Chebyshev polynomials describing the cross-stream dependence can be drastically decreased while preserving all the qualitative features of the solution. In particular, the oblique turbulent band regime experimentally observed in the upper part of the transitional range is extremely robust. In terms of Reynolds numbers, the resolution lowering is seen to yield a regular downward shift of the upper and lower thresholds R t and R g where the bands appear and break down. The study is illustrated with the results of two preliminary experiments.  相似文献   

17.
A numerical investigation is performed for the constant property laminar flow of air in the space between a pair of disks clamped co-axially on a central hub and co-rotating in a stationary cylindrical enclosure. Both two- and three-dimensional flow conditions are examined in relation to the interdisk spacing, H, and the disk angular velocity, Ω. Two interdisk spacings are considered, corresponding to aspect ratios Γ = 0.186 and 0.279 (with Γ = H/(R2+aR), where R2 is the disk radius, a is the disk rim–enclosure wall clearance, and R is the hub radius). A range of rotational speeds encompassing the transition from axisymmetric two-dimensional steady flow to non-axisymmetric three-dimensional unsteady flow are considered for various values of the Reynolds number, Re (with $ Re=\Omega R_2^2/v $, where v is the kinematic viscosity of air). Axisymmetric calculations are first performed for both aspect ratios in the range 3858≤Re≤23 150. Fully three-dimensional calculations are then performed for the configuration with Γ = 0.186 and Re = 23 150, and for the configuration with Γ = 0.279 and Re = 7715, 15 430 and 23 150. The axisymmetric calculations performed with Γ = 0.186 confirm many known features of the flow, including the transition from a steady flow to an oscillatory periodic regime. This occurs at ≈Re = 23 150 for a configuration with a/H = 0, and at ≈Re = 14 670 for one with a/H = 0.28 and a finite disk thickness (b/H = 0.2). Three-dimensional calculations performed for Γ = 0.186 with a/H = 0 and Re = 23 150 reveal a circumferentially periodic flow pattern with eight foci of intensified axial component of vorticity. The axisymmetric calculations performed with Γ = 0.279 and Re > 7715 yield a novel, non-unique steady solution for the velocity field that is asymmetric with respect to the interdisk mid-plane. No experimental verification of this finding exists to date, but similar situations are known to arise in the context of anomalous modes of the Taylor–Couette flow. Relaxing the axisymmetry constraint allows this flow to evolve to an oscillatory three-dimensional regime of increasing irregularity with increasing rotational speed. In this case, the number of foci of intensified axial vorticity varies with time, ranging from six at Re = 7715 to between six and eight at Re = 23 150. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Direct numerical simulations of Taylor-Couette flow from Re= 8000 to 25000 have been conducted to investigate changes of turbulence statistics in the transition of the Reynolds number dependency of the mean torque near Re= 10000. The velocity fluctuations are decomposed into the contributions of the Taylor vortex and remaining turbulent fluctuations. Significant Reynolds number dependencies of these components are observed in the radial profiles of the Reynolds stress and the transmission of the mean torque. The contributions of Taylor vortex and turbulent components in the net amount of mean torque are evaluated. The Taylor vortex component is overtaken by the turbulent counterpart around Re= 15000 when they are defined as the azimuthally averaged component and the remnants. The results show that the torque transition can be explained by the competition between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components.  相似文献   

19.
20.
An experimental investigation of the moderate Reynolds number plane air jets was undertaken and the effect of the jet Reynolds number on the turbulent flow structure was determined. The Reynolds number, which was defined by the jet exit conditions, was varied between 1000 and 7000. Other initial conditions, such as the initial turbulence intensity, were kept constant throughout the experiments. Both hot-wire and laser Doppler anemometry were used for the velocity measurements. In the moderate Reynolds number regime, the turbulent flow structure is in transition. The average size and the number of the large scale of turbulence (per unit length of jet) was unaffected by the Reynolds number. A broadening of the turbulent spectra with increasing Reynolds number was observed. This indicated that there is a decrease in the strength of the large eddies resulting from a reduction of the relative energy available to them. This diminished the jet mixing with the ambient as the Reynolds number increased. Higher Reynolds numbers led to lower jet dilution and spread rates. On the other hand, at higher Reynolds numbers the dependence of jet mixing on Reynolds number became less significant as the turbulent flow structure developed into a self-preserving state.List of symbols b u velocity half-width of the jet - C u, C u,0 constants defining the velocity decay rate - D nozzle width - E u one dimensional power spectrum of velocity fluctuations - f frequency - K u, K u,0 constants defining the jet spread rate - k wavenumber (2f/U) - L longitudinal integral scale - R 11 correlation function - r separation distance - Re jet Reynolds number (U 0 D/v) - St Strouhal number (fD/U 0) - t time - U axial component of the mean velocity - U m mean velocity on the jet axis - U 0 mean velocity at the jet exit - u the rms of u - u fluctuating component of the axial velocity - V lateral component of the mean velocity - fluctuating component of the lateral velocity - x axial distance from the nozzle exit - y lateral distance from the jet axis - z spanwise distance from the jet axis - v kinematic viscosity - time lag A version of this paper was presented as paper no. 86-0038 at the AIAA 24th Aerospace Sciences Meeting, Reno NV, USA, January 1986  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号