首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate a predator–prey model with Gompertz growth function and impulsive dispersal of prey between two patches. Using the dynamical properties of single‐species model with impulsive dispersal in two patches and comparison principle of impulsive differential equations, necessary and sufficient criteria on global attractivity of predator‐extinction periodic solution and permanence are established. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, it is studied that two species predator-prey Lotka-Volterra type dispersal system with delay and Holling type II response function, in which the prey species can disperse among n patches, while the density-independent predator species is confined to one of the patches and cannot disperse. Sufficient conditions of integrable form for the boundedness, permanence, extinction and the existence of positive periodic solution are established, respectively.  相似文献   

3.
Permanence of a dispersal single-species population model is considered where environment is partitioned into several patches and the species requires some time to disperse between the patches. The model is described by delay differential equations. The existence of food-rich patches and small dispersions among the patches are proved to be sufficient to ensure partial permanence of the model. It is also shown that partial permanence ensures permanence if each food-poor patch is connected to at least one food-rich patch and if each pair in food-rich patches is connected. Furthermore, it is proved that partial persistence is ensured even under large dispersion among food-rich patches if the dispersion time is relatively small.  相似文献   

4.
This paper studies an impulsive two species periodic predator–prey Lotka–Volterra type dispersal system with Holling type III functional response in a patchy environment, in which the prey species can disperse among n different patches, but the predator species is confined to one patch and cannot disperse. Conditions for the permanence and extinction of the predator–prey system, and for the existence of a unique globally stable periodic solution are established. Numerical examples are shown to verify the validity of our results.  相似文献   

5.
This paper considers permanence of a single-species dispersal periodic system with the possibility of the loss for the species during their dispersion among patches. The condition obtained for permanence generalizes the known condition on the system without loss for the species in the process of movement. Next, we add predators into every patch and consider the survival possibility of the predator. It is shown that the total amount of the predators can remain positive, if the single-species (prey) dispersal system has a positive periodic solution and the quantity of prey in each patch is enough for survival of the predator.  相似文献   

6.
In this paper, we study two species predator–prey Lotka–Volterra type dispersal system with periodic coefficients in two patches, in which both the prey and predator species can disperse between two patches. By utilizing analytic method, sufficient and realistic conditions on permanence and the existence of periodic solution are established. The theoretical results are confirmed by a special example and numerical simulations.  相似文献   

7.
In this paper, we study two species time-delayed predator-prey Lotka-Volterra type dispersal systems with periodic coefficients, in which the prey species can disperse among n patches, while the density-independent predator species is confined to one of patches and cannot disperse. Sufficient conditions on the boundedness, permanence and existence of positive periodic solution for this systems are established. The theoretical results are confirmed by a special example and numerical simulations.  相似文献   

8.
主要针对一类非自治食饵具有阶段结构的捕食者非密度制约的捕食食饵模型进行了分析讨论,得到了种群灭绝以及持久的积分形式的充分条件,把捕食者密度制约的一些重要结论推广到捕食者非密度制约的情形,并且通过构造Lyapunov函数得到了系统的全局吸引性,最后利用数值模拟得到了当系统持久时周期模型的全局吸引性.  相似文献   

9.
Threshold of disease transmission in a patch environment   总被引:1,自引:0,他引:1  
An epidemic model is proposed to describe the dynamics of disease spread between two patches due to population dispersal. It is proved that reproduction number is a threshold of the uniform persistence and disappearance of the disease. It is found that the dispersal rates of susceptible individuals do not influence the persistence and extinction of the disease. Furthermore, if the disease becomes extinct in each patch when the patches are isolated, the disease remains extinct when the population dispersal occurs; if the disease spreads in each patch when the patches are isolated, the disease remains persistent in two patches when the population dispersal occurs; if the disease disappears in one patch and spreads in the other patch when they are isolated, the disease can spread in all the patches or disappear in all the patches if dispersal rates of infectious individuals are suitably chosen. It is shown that an endemic equilibrium is locally stable if susceptible dispersal occurs and infectious dispersal turns off. If susceptible individuals and infectious individuals have the same dispersal rate in each patch, it is shown that the fractions of infectious individuals converge to a unique endemic equilibrium.  相似文献   

10.
The effect of dispersal on the permanence of population in a polluted patch is studied in this paper. The authors constructed a single-species dispersal model with stage-structure in two patches. The analysis focuses on the case that the toxicant input in the polluted patch has a limit value. The authors derived the conditions under which the population will be either permanent, or extinct.  相似文献   

11.
On Nonautonomous Prey predator Patchy System   总被引:4,自引:0,他引:4  
§1.IntroductionInteresthasbeengrowinginthestudyofmathematicalmodelsofpopulationsdispers-ingamongpatchesinaheterogeneousenviro...  相似文献   

12.
This paper studies two species predator–prey Lotka–Volterra type dispersal systems with periodic coefficients and infinite delays, in which the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. Sufficient and necessary conditions of integrable form for the permanence, extinction and the existence of positive periodic solutions are established, respectively. Some well-known results on the nondelayed periodic predator–prey Lotka–Volterra type dispersal systems are improved and extended to the delayed case.  相似文献   

13.
This paper studies the effect of dispersal on the permanence of population models in poor patchy environment. We first consider the logistic system with dispersal for single species and obtain the conditions for its permanence. On the basis of the conditions, we then consider a periodic predator-prey system where the prey can disperse among several patches. A necessary and sufficient condition is obtained for the permanence of the periodic predator-prey system. We discuss the biological implications of the main results.  相似文献   

14.
In this paper,a set of suffcient conditions which ensure the permanence of a nonlinear periodic predator-prey system with prey dispersal and predator density-independence are obtained,where the prey species can disperse among n patches,while the density-independent predator is confined to one of the patches and cannot disperse. Our results generalize some known results.  相似文献   

15.
An impulsive two species periodic predator-prey Lotka–Volterra type dispersal system with mixed functional responses is presented and studied in this paper. Conditions for the permanence and extinction of the predator-prey system, and for the existence of a unique globally stable periodic solution are established. Numerical examples are shown to verify the validity of our results.  相似文献   

16.
A nonautonomous eco-epidemic model with disease in the prey is formulated and studied. Some sufficient and necessary conditions on the permanence and extinction of the infective prey are established by introducing the new research method. Some sufficient conditions on the global attractivity of the model are presented by constructing a Lyapunov function. Finally, an example is given to show that the periodic model is global attractivity if the infective prey is permanent.  相似文献   

17.
Much of the existing stage-structured consumer–resource models ignore the permanence. In this paper, we consider the permanence for a series of staged-structured consumer–resource models with the function response of so-called “prey-dependence”(resource-dependence) type. We show that the systems are permanent, if and only if the adult consumer's recruitment rate at the peak of resource abundance is more than its death rate. Our results indicate that the large consumer's maturation time delay will directly lead to its extinction. Furthermore, our arguments for the main results give a light for permanence in the general stage-structured consumer–resource systems.  相似文献   

18.
In this paper, we study a periodic predator–prey system with prey impulsively unilateral diffusion in two patches. Firstly, based on the results in [41], sufficient conditions on the existence, uniqueness and globally attractiveness of periodic solution for predator-free and prey-free systems are presented. Secondly, by using comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the permanence and extinction of prey species x with predator have other food source are established. Finally, the theoretical results both for non-autonomous system and corresponding autonomous system are confirmed by numerical simulations, from which we can see some interesting phenomena happen.  相似文献   

19.
A two-dimensional discrete system of a species in two patches proposed by Newman et al. is studied. It is shown that the unique interior steady state is globally asymptotically stable if the active population has a Beverton–Holt type growth rate. If the population is also subject to Allee effects, then the system has two interior steady states whenever the density-independent growth rate is large. In addition, the model has period-two solutions if the symmetric dispersal exceeds a critical threshold. For small dispersal, populations may either go extinct or eventually stabilize. However, populations are oscillating over time if dispersal is beyond the critical value and the initial populations are large.  相似文献   

20.
In this paper, we introduce and study a Monod type chemostat model with nutrient recycling and impulsive input in a polluted environment. The sufficient and necessary conditions on the permanence and extinction of the microorganism are obtained. Two examples are given in the last section to verify our mathematical results. The numerical analysis show that if only the system is permanent, then it also is globally attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号