共查询到20条相似文献,搜索用时 15 毫秒
1.
Prashant K. Sharma Ranu K. Dutta Samar Layek 《Journal of magnetism and magnetic materials》2009,321(17):2587-2591
The ZnO:Fe nanoparticles of mean size 3-10 nm were synthesized at room temperature by simple co-precipitation method. The crystallite structure, morphology and size estimation were performed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Fe doping concentration. The magnetic behavior of the nanoparticles of ZnO with varying Fe doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong ferromagnetic behavior, however at higher doping percentage of Fe, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Fe-Fe ions suppressed the ferromagnetism at higher doping concentrations of Fe. Room-temperature Mössbauer spectroscopy investigation showed Fe3+ nature of the iron atom in ZnO matrix. 相似文献
2.
V-doped ZnO nanoparticles were synthesized by heating metal acetates in organic solvent. All synthesized samples were annealed in air and reducing gas atmosphere at 600 °C for 8 h. The XRD patterns of both samples annealed in air and reducing atmosphere indicate that samples have polycrystalline wurtzite structure with increase in lattice constant with increase in V-doping. The particle sizes were calculated by using Scherrer's equation which lies in the range of 25-30 nm. The SEM images show that particles annealed in air and under reducing environment are spherical in nature. The EDX results reveal that samples contain V, Zn, and O contents only. The TPR results indicate that the system contains isolated VOx, ZnOx and bimetallic Zn: V (Ox) sites and indication of electronically excited bimetal sites. There is no signature of ferromagnetism in all samples annealed in air while room temperature ferromagnetism has been observed only under reducing atmosphere annealing. There is monotonically increase in saturation magnetization with V-doping concentration. UV-vis spectroscopy study shows that there is a linear increase in band gap energy with increase in V-doping, a direct evidence of change in magnetic properties due to V-doping and under reducing environment. 相似文献
3.
Prashant K. Sharma Ranu K. Dutta Avinash C. Pandey 《Journal of magnetism and magnetic materials》2009,321(20):3457-3461
The ZnO:Ni2+ nanoparticles of mean size 2-12 nm were synthesized at room temperature by the simple co-precipitation method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Ni doping concentration and an additional NiO-associated diffraction peak was observed above 15% of Ni2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Ni2+ doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially, these nanoparticles showed strong ferromagnetic behavior, however, at higher doping percentage of Ni2+, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Ni-Ni ions suppressed the ferromagnetism at higher doping concentrations of Ni2+. 相似文献
4.
A serial of FePtNi nanoparticles were investigated on their crystal structure and magnetic properties. The FePtNi nanoparticles were synthesized simultaneously by the reduction of iron (III) acetylacetonate, platinum (II) acetylacetonate and nickel (II) acetylacetonate with 1,2-hexadecanediol as the reducing agent. The X-ray diffraction patterns indicate that the addition of 8, 12, 17 at% Ni in FePt nanoparticles suppressed the transformation of the particles from disorder face-centered cubic to order face-centered tetragonal L10-phase under annealing treatment. However, further increasing Ni contents to 21 at%, the nanoparticle transformed to L12 phase. Doping of Ni into the FePt compound system may decrease coercivity and crystal anisotropy energy. A maximum coercivity of 7 KOe at room temperature was obtained for (Fe52Pt48)92Ni8 nanoparticles after annealing at 600 °C for 30 min. 相似文献
5.
6.
Abdub G. Ali Francis B. Dejene Hendrik C. Swart 《Central European Journal of Physics》2012,10(2):478-484
Un-doped and Mn-doped ZnO nanoparticles were successfully synthesized in an ethanolic solution by using a sol-gel method.
Material properties of the samples dependence on preparation conditions and Mn concentrations were investigated while other
parameters were controlled to ensure reproducibility. It was observed that the structural properties, particle size, band
gap, photoluminescence intensity and wavelength of maximum intensity were influenced by the amount of Mn ions present in the
precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO,
indicating a single phase. The diffraction peaks of doped samples are slightly shifted to lower angles with an increase in
the Mn ion concentration, signifying the expansion of the lattice constants and increase in the band gap of ZnO. All the samples
show the absorption in the visible region. The absorbance spectra show that the excitonic absorption peak shifts towards the
lower wavelength side with the Mn-doped ZnO nanoparticles. The PL spectra of undoped ZnO consist of UV emission at 388 nm
and broad visible emission at 560 nm with varying relative peak intensities. The doping of ZnO with Mn quenches significantly
the green emission while UV luminescence is slightly affected. 相似文献
7.
V. G. Il’ves S. Yu. Sokovnin S. A. Uporov M. G. Zuev 《Physics of the Solid State》2013,55(6):1262-1271
An amorphous-nanocrystalline Gd2O3 powder with a specific surface area of 155 m2/g has been prepared using pulsed electron beam evaporation in vacuum. The nanopowder consists of 20- to 500-nm agglomerates formed by crystalline nanoparticles (3–12 nm in diameter) connected by amorphous-nanocrystalline strands. At room temperature, the Gd2O3 nanopowder exhibits a paramagnetic behavior. The phase transformations occurring in the powder have been investigated using differential scanning calorimetry and thermogravimetry (40–1400°C). The amorphous phase of the nanopowder is thermally stable up to a temperature of 1080°C. It has been found that the amorphous phase has an inhibitory effect on the temperature of the polymorphic transformation from the cubic phase into the monoclinic phase. It has been revealed that, compared with the microcrystalline powder, the Gd2O3 nanopowder is characterized by a complete quenching of photoluminescence. 相似文献
8.
为了考察基底温度对氧化铝薄膜折射率以及沉积厚度的影响情况,在不同基底温度环境下,通过离子辅助电子束蒸发方式,在玻璃基底上制备了同一Tooling因子条件下所监测到相同厚度的Al2O3薄膜,利用分光光度计测量光谱透过率,依据光学薄膜相关理论,计算了基底温度在25℃~300℃范围内获得的膜层实际物理厚度为275.611 nm~348.447 nm,以及膜层折射率的变化。通过对实验结果的数值计算和曲线模拟,给出了基底温度对于薄膜的折射率和实际厚度的影响情况。 相似文献
9.
We report on the reactive electron beam evaporative growth of well-aligned ZnO nanocolumns on Si (001) wafers in the environment of NH3/H2 gas mixture by using polycrystalline ZnO ceramic target as source material. The growth was carried out at low temperatures (400-450 °C) without employing any metal catalysts. Field emission scanning electron microscopy (FESEM) revealed that nanocolumns with uniform distributions in their diameters, lengths, and densities were grown vertically from the substrates and terminated by smooth hexagonal (0001) facets with no terrace-like steps emerged, which should render potential applications such as inherent resonance cavities in fabricating ultraviolet-laser arrays. X-ray diffraction measurements revealed that ZnO nanocolumns were highly c-axis oriented, which is well consistent with the FESEM observations. More importantly, photoluminescence investigations of the nanocolumns demonstrated the strong excitonic emission and extremely weak deep level emission, indicating the high crystalloid and optical quality of the nanocolumns. 相似文献
10.
We report systematic study of structural, phonon and optical properties of Cr-doped ZnO nanoparticles. These particles are
synthesized through simple sol–gel technique. Structural studies carried out by X-ray diffraction method, confirm that the
prepared particles are in hexagonal wurtzite structure and lattice parameters change considerably while increasing the doping.
Raman and Fourier transform infrared spectral studies show that the intensity of the phonon modes decreased and also blue
shift due to ion doping, respectively. Apart from this, transmission electron microscopic studies show reduction in particle
size where the particle diameters reduced from 36 to 11 nm. Optical absorption spectral measurements show a blue shift in
the band-gap and increment in excitonic oscillator strength. Photoluminescence studies show doping altered the near-band edge
emission but there is no change in the other emission bands which is due to oxygen vacancy, surface defects and surface dangling
bonds. 相似文献
11.
Bhavani Palagiri Rajababu Chintaparty Venkata subbha Reddy Imma Reddy 《Phase Transitions》2017,90(6):578-589
The iron oxide nanoparticles were synthesized by a simple hydrothermal method at different heating temperatures and pH conditions. The synthesized materials were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–visible spectrometer and vibrating sample magnetometer. With increment in pH of the synthesized materials were resulted in orthorhombic (goethite) and cubic (magnetite) structures at pH 6 and 12, respectively. The banding nature of synthesized materials was analyzed by infrared spectra. The synthesized powders at 130?°C showed higher percent of nanorods (length = 90–120 nm) in addition to lower percentage of nanoparticles. The material at pH 12 consisted of maximum nanoparticles with size = 10–60 nm with small agglomerations. Band gap energy of synthesized materials was 2.2–2.8 eV. Herein, the reaction conditions tuned the saturation magnetization (MS). The maximum MS (59.38 emu/g) was obtained at pH 12 and lower MS (0.65 emu/g) was observed at pH 6 due to intrinsic property of goethite phase. 相似文献
12.
《Chinese Journal of Physics (Taipei)》2018,56(5):2218-2225
Magnesium ferrite nanoparticles calcined at 300 °C, 350 °C, 400 °C, 450 °C were synthesized by sol-gel method. The effects of calcinations on the cation distribution, structural and magnetic properties have been investigated. X-ray diffraction (XRD) and vibrating scanning magnetometer (VSM) were used to characterize the structural and magnetic properties. X-ray diffraction analysis revealed the formation of single phase MgFe2O4 in all the samples. Lattice constant and crystallite size increased with calcination. X-ray diffraction data were used to estimate the average cationic distribution among A site and B site. Cationic distribution shows that there is migration of cation between tetrahedral A site and octahedral B site. Saturation magnetization increased with particle size. Coercivity decreased with calcination temperature as a result of decrease in pinning effect at the grain boundary. Curie temperature (TC) decreased slightly due to weakening of A-B exchange interaction. Low temperature magnetic measurement revealed that blocking temperature (TB) increased due to strong magnetic interaction. 相似文献
13.
The metal aluminum (Al) is widely used because it has high reflectivity from the ultraviolet to the infrared band. But the new deposited Al films is exposed to the atmosphere, it forms transparent Al2O3 films on its surface at once. In this letter, the Al films is deposited on the quartz substrate by electron beam evaporation. The effect of Al films oxidation on refractive index and extinction coefficient is investigated by spectroscopic ellipsometry (SE). The optical constants of Al films change with the increase of oxidation time. The two parameters become stable when these films are exposed in air more than 2 days. 相似文献
14.
在掺杂浓度范围为2.78%—6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象. 相似文献
15.
16.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes. 相似文献
17.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased. 相似文献
18.
19.
S. Tricot M. Nistor E. Millon C. Boulmer-Leborgne N.B. Mandache J. Perrière W. Seiler 《Surface science》2010,604(21-22):2024-2030
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method. 相似文献
20.
Changzhen Liu Dawei Meng Haixia Pang Xiuling Wu Jing Xie Xiaohong Yu Long Chen Xiaoyang Liu 《Journal of magnetism and magnetic materials》2012
Zn1–xFexO (x=0–0.05) nanoparticles were synthesized without a catalyst by a two-step method. Fe was doped into ZnO by a source of metallic Fe sheets in a solid–liquid system at 80 °C, and the Zn1−xFexO nanoparticles were obtained by annealing at 300 °C. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy were used to characterize the structural properties of the as-grown Zn1−xFexO. The optical properties were determined by Infrared and Ultraviolet–visible spectroscopy. The results confirm that the crystallinity of the ZnO is deteriorated due to Fe-doping. XPS results show that there is a mixture of Fe0+ and the Fe3+ in the representative Zn0.95Fe0.05O sample. The optical band gap of Zn1−xFexO is enhanced with increasing of Fe-doping. Room temperature ferromagnetism was observed in all the Fe-doped ZnO samples. 相似文献