共查询到20条相似文献,搜索用时 0 毫秒
1.
Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations 总被引:1,自引:0,他引:1
In this paper, a cubic superconvergent finite volume element method based on optimal stress points is presented for one-dimensional elliptic and parabolic equations. For elliptic problem, it is proved that the method has optimal third order accuracy with respect to H1 norm and fourth order accuracy with respect to L2 norm. We also obtain that the scheme has fourth order superconvergence for derivatives at optimal stress points. For parabolic problem, the scheme is given and error estimate is obtained with respect to L2 norm. Finally, numerical examples are provided to show the effectiveness of the method. 相似文献
2.
In this paper we develop and study a new stabilized finite volume method for the two-dimensional Stokes equations. This method
is based on a local Gauss integration technique and the conforming elements of the lowest-equal order pair (i.e., the P
1–P
1 pair). After a relationship between this method and a stabilized finite element method is established, an error estimate
of optimal order in the H
1-norm for velocity and an estimate in the L
2-norm for pressure are obtained. An optimal error estimate in the L
2-norm for the velocity is derived under an additional assumption on the body force.
This work is supported in part by the NSF of China 10701001 and by the US National Science Foundation grant DMS-0609995 and
CMG Chair Funds in Reservoir Simulation. 相似文献
3.
Yasunori Aoki Hans De Sterck 《Journal of Computational and Applied Mathematics》2011,235(17):5177-5187
The accuracy of a finite element numerical approximation of the solution of a partial differential equation can be spoiled significantly by singularities. This phenomenon is especially critical for high order methods. In this paper, we show that, if the PDE is linear and the singular basis functions are homogeneous solutions of the PDE, the augmentation of the trial function space for the Finite Volume Element Method (FVEM) can be done significantly simpler than for the Finite Element Method. When the trial function space is augmented for the FVEM, all the entries in the matrix originating from the singular basis functions in the discrete form of the PDE are zero, and the singular basis functions only appear in the boundary conditions. That is to say, there is no need to integrate the singular basis functions over the elements and the sparsity of the matrix is preserved without special care. FVEM numerical convergence studies on two-dimensional triangular grids are presented using basis functions of arbitrary high order, confirming the same order of convergence for singular solutions as for smooth solutions. 相似文献
4.
In this article, residual‐type a posteriori error estimates are studied for finite volume element (FVE) method of parabolic equations. Residual‐type a posteriori error estimator is constructed and the reliable and efficient bounds for the error estimator are established. Residual‐type a posteriori error estimator can be used to assess the accuracy of the FVE solutions in practical applications. Some numerical examples are provided to confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 259–275, 2017 相似文献
5.
《Applied Mathematical Modelling》2014,38(15-16):3860-3870
In this paper, a new one-dimensional space-fractional Boussinesq equation is proposed. Two novel numerical methods with a nonlocal operator (using nodal basis functions) for the space-fractional Boussinesq equation are derived. These methods are based on the finite volume and finite element methods, respectively. Finally, some numerical results using fractional Boussinesq equation with the maximally positive skewness and the maximally negative skewness are given to demonstrate the strong potential of these approaches. The novel simulation techniques provide excellent tools for practical problems. These new numerical models can be extended to two- and three-dimensional fractional space-fractional Boussinesq equations in future research where we plan to apply these new numerical models for simulating the tidal water table fluctuations in a coastal aquifer. 相似文献
6.
Two-grid methods for characteristic finite volume element solutions are presented for a kind of semilinear convection-dominated diffusion equations. The methods are based on the method of characteristics, two-grid method and the finite volume element method. The nonsymmetric and nonlinear iterations are only executed on the coarse grid (with grid size H). And the fine-grid solution (with grid size h) can be obtained by a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy H = O(h1/3). 相似文献
7.
8.
Fayssal Benkhaldoun Mohammed Seaïd 《Journal of Computational and Applied Mathematics》2010,234(1):58-72
We present a new finite volume method for the numerical solution of shallow water equations for either flat or non-flat topography. The method is simple, accurate and avoids the solution of Riemann problems during the time integration process. The proposed approach consists of a predictor stage and a corrector stage. The predictor stage uses the method of characteristics to reconstruct the numerical fluxes, whereas the corrector stage recovers the conservation equations. The proposed finite volume method is well balanced, conservative, non-oscillatory and suitable for shallow water equations for which Riemann problems are difficult to solve. The proposed finite volume method is verified against several benchmark tests and shows good agreement with analytical solutions. 相似文献
9.
P. Chatzipantelidis R.D. Lazarov V. Thomée 《Numerical Methods for Partial Differential Equations》2009,25(3):507-525
We study spatially semidiscrete and fully discrete finite volume element approximations of the heat equation with homogeneous Dirichlet boundary conditions in a plane polygonal domain with one reentrant corner. We show that, as a result of the singularity in the solution near the reentrant corner, the convergence rate is reduced from optimal second order, similarly to what was shown for the finite element method in the earlier work 2 . Optimal order convergence may be restored by mesh refinement near the corners of the domain. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
10.
Chuanjun Chen Wei Liu Chunjia Bi 《Numerical Methods for Partial Differential Equations》2013,29(5):1543-1562
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
11.
We present and analyze the modified method of characteristics (MMOC) and the modified method of characteristics with adjusted advection (MMOCAA) for the finite volume element (FVE) method of convection-diffusion problems. These two schemes maintain the advantages of both the MMOC and the FVE method. And the MMOCAA scheme discussed herein conserves the conservation law globally at a minor additional computational cost. Optimal-order error estimates in the H1-norm are proved for these schemes. A numerical example is presented to confirm the estimates. 相似文献
12.
We study the superconvergence of the finite volume element (FVE) method for solving convection‐diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H1‐superconvergence result: . Then, we present a gradient recovery formula and prove that the recovery gradient possesses the ‐order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152–1168, 2014 相似文献
13.
对一类非线性对流占优的抛物型积分微分方程给出了变网格特征有限元计算格式.并得到了最优犔2 模误差估计 相似文献
14.
Zhijun Tan Tao Tang Zhengru Zhang 《Journal of Computational and Applied Mathematics》2006,190(1-2):252-269
A simple moving mesh method is proposed for solving phase-field equations. The numerical strategy is based on the approach proposed in Li et al. [J. Comput. Phys. 170 (2001) 562–588] to separate the mesh-moving and PDE evolution. The phase-field equations are discretized by a finite-volume method, and the mesh-moving part is realized by solving the conventional Euler–Lagrange equations with the standard gradient-based monitors. Numerical results demonstrate the accuracy and effectiveness of the proposed algorithm. 相似文献
15.
Huanrong Li 《Journal of Mathematical Analysis and Applications》2009,358(1):47-321
The finite volume element (FVE) methods for a class of partial differential equations are discussed and analyzed in this paper. The new initial values are introduced in the finite volume element schemes, and we obtain optimal error estimates in Lp and W1,p (2?p?∞) as well as some superconvergence estimates in W1,p (2?p?∞). The main results in this paper perfect the theory of the finite volume element methods. 相似文献
16.
Jorge San Martín Loredana Smaranda Tako Takahashi 《Journal of Computational and Applied Mathematics》2009,230(2):521-545
We consider the approximation of the unsteady Stokes equations in a time dependent domain when the motion of the domain is given. More precisely, we apply the finite element method to an Arbitrary Lagrangian Eulerian (ALE) formulation of the system. Our main results state the convergence of the solutions of the semi-discretized (with respect to the space variable) and of the fully-discrete problems towards the solutions of the Stokes system. 相似文献
17.
P. Chatzipantelidis R. D. Lazarov V. Thome 《Numerical Methods for Partial Differential Equations》2004,20(5):650-674
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal, special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data that yield optimal order error estimates in L2 and H 1 . The convergence rate in the L∞ norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004 相似文献
18.
《Applied Mathematical Modelling》2014,38(9-10):2648-2660
The finite transfer method is going to be used to solve a p system of linear ordinary differential equations. The complete problem is extended by adding the p boundary equations involved. It is chosen a fourth order scheme to obtain finite transfer expressions. A recurrence strategy is used in these equations and permits one to relate different points in the domain where boundary equations are defined. Finally a 2p algebraic system of equations is noted and solved. To show the efficiency and accuracy, the method is applied to determine the structural behavior of a bending beam with different supports and to solve a differential equation of second degree with different boundary conditions. 相似文献
19.
A finite element method for contact/impact 总被引:2,自引:0,他引:2
Ideas from the analysis of differential-algebraic equations are applied to the numerical solution of frictionless contact/impact problems in solid mechanics. Index-one and two formulations for dynamic contact–impact within the context of the finite element method are derived. The resulting equations are shown to stabilize the kinematic fields at the contact interface, at the expense of a small energy loss, which is shown to decrease consistently with mesh refinement. This energy dissipation is shown to be necessary for the establishment of persistent contact. A Newmark-type time integration scheme is derived from the proposed formulation, and shown to yield excellent results in modeling the transition to contact/impact. 相似文献
20.
In this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems. 相似文献