首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We succeeded in the detection of the sitting-atop (SAT) copper(II) complex of TPP (5,10,15,20-tetraphenylporphyrin) in acetonitrile (AN) as a solvent with a very low Br?nsted basicity, where two pyrrolenine nitrogens in the Cu(II)-SAT complex coordinate to the metal ion and two protons still remain on the pyrrole nitrogens. The structure parameters around the copper(II) ion in the Cu(II)-SAT complex, as determined by a fluorescent EXAFS method, suggest an axially elongated and equatorially distorted six-coordinate geometry. We measured the rates of the formation reaction of the SAT complexes for a series of transition metal(II) ions in AN using the stopped-flow technique. We propose the mechanism where there is a rapid deformation equilibrium of the porphyrin ring prior to the rate-determining step of the bond rupture of a coordinated solvent molecule on the metal(II) ion. Furthermore, we measured the rates of the deprotonation reaction of the Cu(II)-SAT complex by some Br?nsted bases and indicated that the rate-determining step is the attack of the base on the proton of the pyrrole nitrogen in the SAT complex. Finally, a unified mechanism relevant to the porphyrin metalation mechanism has been proposed.  相似文献   

2.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

3.
We have succeeded in the preparation and spectroscopic characterization of sitting-atop (SAT) complexes of meso-tetraarylporphyrins (H2t(X)pp) with zirconium(IV) chloride under mild conditions and at room temperature, where two pyrrolenine nitrogens in the SAT complexes, [(H2t(X)pp)ZrCl4], coordinate to a zirconium atom and two protons still remain on the pyrrole nitrogens. UV–Vis and NMR (1H and 13C) spectral data show that the porphyrin core of the SAT complexes is distorted and two pyrrolenine nitrogen atoms of the porphyrin act as electron donors to the zirconium atom of ZrCl4.  相似文献   

4.
The protonation constants () of 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) and stability constants of complexes formed between this pyridine-containing macrocycle and several different metal ions have been determined in 1.0 M KCl at 25 degrees C and compared to previous literature values. The first protonation constant was found to be 0.5-0.6 log units higher than the value reported previously, and a total of five protonation steps were detected (log = 11.36, 7.35, 3.83, 2.12, and 1.29). The stability constants of complexes formed between PCTA and Mg2+, Ca2+, Cu2+, and Zn2+ were also somewhat higher than those previously reported, but this difference could be largely attributed to the higher first protonation constant of the ligand. Stability constants of complexes formed between PCTA and the Ln3+ series of ions and Y3+ were determined by using an "out-of-cell" potentiometric method. These values ranged from log K = 18.15 for Ce(PCTA) to log K = 20.63 for Yb(PCTA), increasing along the Ln series in proportion to decreasing Ln3+ cation size. The rates of complex formation for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA) were followed by conventional UV-vis spectroscopy in the pH range 3.5-4.4. First-order rate constants (saturation kinetics) obtained for different ligand-to-metal ion ratios were consistent with the rapid formation of a diprotonated intermediate, Ln(H(2)PCTA)(2+). The stabilities of the intermediates as determined from the kinetic data were 2.81, 3.12, 2.97, and 2.69 log K units for Ce(H(2)PCTA), Eu(H(2)PCTA), Y(H(2)PCTA), and Yb(H(2)PCTA), respectively. Rearrangement of these intermediates to the fully chelated complexes was the rate-determining step, and the rate constant (k(r)) for this process was found to be inversely proportional to the proton concentration. The formation rates (k(OH)) increased with a decrease in the lanthanide ion size [9.68 x 10(7), 1.74 x 10(8), 1.13 x 10(8), and 1.11 x 10(9) M(-1) s(-1) for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA), respectively]. These data indicate that the Ln(PCTA) complexes exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed dissociation rates (k1) varied with the cation from 9.61 x 10(-4), 5.08 x 10(-4), 1.07 x 10(-3), and 2.80 x 10(-4) M(-1) s(-1) for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA), respectively.  相似文献   

5.
A previous approach (Hancock, R. D.; Bartolotti, L. J. Inorg. Chem. 2005, 44, 7175) using DFT calculations to predict log K1 (formation constant) values for complexes of NH3 in aqueous solution was used to examine the solution chemistry of Rg(I) (element 111), which is a congener of Cu(I), Ag(I), and Au(I) in Group 1B. Rg(I) has as its most stable presently known isotope a t(1/2) of 3.6 s, so that its solution chemistry is not easily accessible. LFER (Linear free energy relationships) were established between DeltaE(g) calculated by DFT for the formation of monoamine complexes from the aquo ions in the gas phase, and DeltaG(aq) for the formation of the corresponding complexes in aqueous solution. For M2+, M3+, and M4+ ions, the gas-phase reaction was [M(H2O)6]n+(g) + NH3(g) = [M(H2O)5NH3]n+(g) + H2O(g) (1), while for M+ ions, the reaction was [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (2). A value for DeltaG(aq) and for DeltaE for the formation of M = Cu2+ in reaction 1, not obtained previously, was calculated by DFT and shown to correlate well with the LFER obtained previously for other M2+ ions, supporting the LFER approach used here. The simpler use of DeltaE values instead of DeltaG(aq) values calculated by DFT for formation of monoamine complexes in the gas phase leads to LFER as good as the DeltaG-based correlations. Values of DeltaE were calculated by DFT to construct LFER with M+ = H+, and the Group 1B metal ions Cu+, Ag+, Au+, and Rg+, and with L = NH3, H2S, and PH3 in reaction 3: [M(H2O)2]+(g) + L(g) = [M(H2O)L]+g) + H2O(g) (3). Correlations involving DeltaE calculated by DMol3 for H+, Cu+, Ag+, and Au+ could reliably be used to construct LFER and estimate unknown log K1 values for Rg(I) complexes of NH3, PH3, and H2S calculated using the ADF (Amsterdam Density Functional) code. Log K1 values for Rg(I) complexes are predicted that suggest the Rg(I) ion to be a very strong Lewis acid that is extremely "soft" in the Pearson hard and soft acids and bases sense.  相似文献   

6.
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.  相似文献   

7.
Li MJ  Chu BW  Zhu N  Yam VW 《Inorganic chemistry》2007,46(3):720-733
A series of ruthenium(II) diimine complexes containing thia-, selena- and aza-crowns derived from 1,10-phenanthroline have been synthesized and characterized, and their photophysics and electrochemistry were studied. Their interaction with metal ions was investigated by UV-vis, luminescence, and 1H NMR spectroscopy. The crystal structures of [Ru(bpy)2(L1)](PF6)2, [Ru(bpy)2(L2)](ClO4)2, [Ru(bpy)2(L3)](ClO4)2, and [Ru(bpy)2(L4)](ClO4)2 have been determined. The luminescence properties of [Ru(bpy)2(L1)](ClO4)2 were found to be sensitive and selective toward the presence of Hg2+ ions in an acetonitrile solution. The addition of alkaline-earth metal ions, Zn2+, Cd2+, and Hg2+ ions, to the solution of [Ru(bpy)2(L6)](ClO4)2 in acetonitrile gave rise to large changes in the UV-vis and emission spectra. The binding of metal ions to [Ru(bpy)2(L6)](ClO4)2 was found to cause a strong enhancement in the emission intensities of the complex, with high specificity toward Hg2+ ions.  相似文献   

8.
The complexes of transition-metal ions (M2+, where M = Fe, Co, Ni, Cu, Zn, Cd, and Hg) with 2-acetylbenzimidazolethiosemicarbazone (L) are studied under electrospray ionization (ESI) conditions. The ESI mass spectra of Fe and Co complexes showed the complex ions corresponding to [M+2L-2H]+, and those of Ni and Zn complexes showed [M+2L-H]+ ions, wherein the metal/ligand ratio is 1:2 and the oxidation state of the central metal ion is +3 in the case of Fe and Co and +2 in the case of Ni and Zn. The Cd and Cu complexes showed preferentially 1:1 complex ions, i.e., [M+L-H]+ or [M+L+Cl]+, whereas Hg formed both 1:1 and 1:2 complex ions. During formation of the above complex ions one or two ligands are deprotonated after keto-enol tautomerism, depending on the nature and oxidation state of central metal ion. The structures and coordination numbers of the metal ions in the complex ions were studied by their collision-induced dissociation spectra and ion-molecule reactions with acetonitrile or propylamine in the collision cell. Based on these results it is concluded that Fe, Co, Ni and Zn form stable octahedral complexes, whereas tetrahedral or square planar complexes are formed preferentially for other metals. In addition, the Cu complex showed a [2L+2Cu-3H]+ ion with a Cu-Cu bond.  相似文献   

9.
Under experimental conditions in which the self-association of the purine-nucleoside 5'-triphosphates (PuNTPs) GTP and ITP is negligible, potentiometric pH titrations were carried out to determine the stabilities of the M(H;PuNTP) and M(PuNTP)2-complexes where M2+ = Mg2+, Ca2+, Sr2+. Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ (I = 0.1 M, 25 degrees C). The stabilities of all M(GTP)2- and M(ITP)2- complexes are significantly larger than those of the corresponding complexes formed with pyrimidine-nucleoside 5'-triphosphates (PyNTPs), which had been determined previously under the same conditions. This increased complex stability is attributed, in agreement with previous 1H MNR shift studies, to the formation of macrochelates of the phosphate-coordinated metal ions with N7 of the purine residues. A similar enhanced stability (despite relatively large error limits) was observed for the M(H;PuNTP) complexes, in which H+ is bound to the terminal y-phosphate group, relative to the stability of the M(H;PyNTP)- species. The percentage of the macrochelated isomers in the M(GTP)2- and M(ITP)2- systems was quantified by employing the difference log KMM(PuNTP)-log KMM(PyNTP); the lowest and highest formation degrees of the macrochelates were observed for Mg(ITP)2- and Cu(GTP)2- with 17 +/- 11% and 97 +/- 1%, respectively. From previous studies of M(ATP)2- complexes, it is known that innersphere and outersphere macrochelates may form; that is, in the latter case a water molecule is between N7 and the phosphate-coordinated M2+. Similar conclusions are reached now by comparisons with earlier 1H MNR shift measurements, that is, that Mg(GTP)2- (21 +/- 11%), for example, exists largely in the form of an outersphere macrochelate and Zn(GTP)2- (68 +/- 4%) as an innersphere one. Generally, the overall percentage of macrochelate falls off for a given metal ion in the order M(GTP)2- > M(ITP)2- > M(ATP)2-; this is in accord with the decreasing basicity of N7 and the steric inhibition of the (C6)NH2 group in the adenine residue. Furthermore, although the absolute stability constants of the previously studied M(GMP), M(IMP), and M(AMP) complexes differ by about two to three log units from the present M(PuNTP)2- results, the formation degrees of the macrochelates are astonishingly similar for the two series of nucleotides for a given metal ion and purine-nucleobase residue. The conclusion that N7 of the guanine residue is an especially favored binding site for metal ions is also in accord with observations made for nucleic acids.  相似文献   

10.
Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.  相似文献   

11.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the binding of selected group II and divalent transition-metal ions by cyclo(Pro-Gly)3 (CPG3), a model ion carrier peptide. Metal salts (CatXn) were combined with the peptide (M) at a molar ratio of 1:10 M/Cat in aqueous solvents containing 50% vol/vol acetonitrile or methanol and 1 or 10 mM ammonium acetate (NH4Ac). Species detected include [M+H]+, [M+Cat-H]+, [M2+Cat]2+, [M+Cat+Ac]+, and [M+Cat+X]+. The relative stabilities of complexes formed with different cations (Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+) were determined from the abundance of 1:1 and 2:1 M/Cat species relative to that of the unbound peptide. The largest metal ions (Ca2+, Sr2+, and Mn2+) formed the most stable complexes. Reducing the buffer concentration increased the overall extent of metal binding. Results show that the binding specificity of CPG3 depends upon the size of the metal ion and its propensity for electrostatic interaction with oxygen atoms. Product ion tandem mass spectrometry of [M+H]+ and [M+Cu-H]+ confirmed the cyclic structure of the peptide, although the initial site(s) of metal attachment could not be determined.  相似文献   

12.
New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)] in which M-H2, MnII, CoII, CuII, ZnII and Fe(III)Cl, have been synthesised. Crystal structures of two C60 complexes with H2TPP, which differ only in the number of benzene solvated molecules, and C60 and C70 complexes with [Cu(tpp)] have been studied. The fullerene molecules form a honeycomb motif in H2TPP.2C60. 3C6H6, puckered graphite-like layers in H2TPP.2C60.4C6H6, zigzag chains in [Cu(tpp)].C70.1.5C7H8.0.5C2HCl3 and columns in [Cu(tpp)]2.C60. H2TPP has van der Waals contacts with C60 through nitrogen atoms and phenyl groups. Copper atoms of the [Cu(tpp)] molecules are weakly coordinated with C70, but form no shortened contacts with C60. The formation of molecular complexes with fullerenes affects the ESR spectra of [M(tpp)] (M = Mn, Co and Cu). [Mn(tpp)] in the complex with C70 lowers its spin state from S = 5/2 to S = 1/2, whereas [Co(tpp)] and [Cu(tpp)] change the constants of hyperfine interaction. ESR, IR, UV-visible and X-ray photoelectron spectroscopic data show no noticeable charge transfer from the porphyrinate to the fullerene molecules.  相似文献   

13.
The synthesis of (Dien)Pt(PMEA-N1), where Dien = diethylenetriamine and PMEA2- = dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is described. The acidity constants of the threefold protonated H3[(Dien)Pt(PMEA-N1)]3+ complex were determined and in part estimated (UV spectrophotometry and potentiometric pH titration): The release of the proton from the (N7)H+ site in H4[(Dien)Pt(PMEA-N1)]3+ occurs with a rather low pKa (= 0.52+/-0.10). The release of the proton from the -P(O)2(OH) group (pKa = 6.69+/-0.03) in H[(Dien)Pt(PMEA-N1)]+ is only slightly affected by the N1-coordinated (Dien)Pt2+ unit. Comparison with the acidic properties of the H[(Dien)Pt(PMEA-N7)]+ species provides evidence that in the (Dien)Pt(PMEA-N7) complex in aqueous solution an intramolecular, outer-sphere macrochelate is formed through hydrogen bonds between the -PO3(2-) residue of PMEA2- and a PtII-coordinated (Dien)NH2 group; its formation degree amounts to about 40%. The stability constants of the M[(Dien)Pt(PMEA-N1)]2+ complexes with M2+ = Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were measured by potentiometric pH titrations in aqueous solution at 25 degrees C and I = 0.1 M (NaNO3). Application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3)H for simple phosph(on)ate ligands. R-PO3(2-), where R represents a non-inhibiting residue without an affinity for metal ions, proves that the primary binding site of (Dien)Pt(PMEA-N1) is the phosphonate group with all metal ions studied; in fact, Mg2+, Ca2+ and Ni2+ coordinate (within the error limits) only to this site. For the Cu[(Dien)Pt(PMEA-N1)]2+ and Zn[(Dien)Pt(PMEA-N1)]2- systems also the formation of five-membered chelates involving the ether oxygen of the -CH2-O-CH2-PO3(2-) residue could be detected; the formation degrees are about 60% and 30%, respectively. The metal-ion-binding properties of the isomeric (Dien)Pt(PMEA-N7) species studied previously differ in so far that the resulting M[(Dien)Pt(PMEA-N7)]2+ complexes are somewhat less stable, but again Cu2+ and Zn2+ also form with this ligand comparable amounts of the mentioned five-membered chelates. In contrast, both M[(Dien)Pt(PMEA-N1/N7)]2+ complexes differ from the parent M(PMEA) complexes considerably; in the latter instance the formation of the five-membered chelates is of significance for all divalent metal ions studied. The observation that divalent metal-ion binding to the phosphonate group of (Dien)Pt(PMEA-N1) and (Dien)Pt(PMEA-N7) is only moderately inhibited (about 0.2-0.4 log units) by the twofold positively charged (Dien)Pt2+ unit at the adenine residue allows the general conclusion, considering that PMEA is a nucleotide analogue, that this is also true for nucleotides and that consequently participation of, for example, two metal ions in an enzymatic process involving nucleotides is not seriously hampered by charge repulsion.  相似文献   

14.
Exchange of the guest Mn2+ ions in Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2 (1-Mn2+; BTT=1,3,5-benzenetristetrazolate) with selected cations results in the formation of isostructural framework compounds 1-M (M=Li+, Cu+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). Similar to the parent compound, the new microporous materials are stable to desolvation and exhibit a high H2 storage capacity, ranging from 2.00 to 2.29 wt % at 77 K and 900 torr. Measurements of the isosteric heat of adsorption at zero coverage reveal a difference of 2 kJ/mol between the weakest and strongest H2-binding materials, which is attributed to variations in the strength of interaction between H2 molecules and unsaturated metal centers within each framework. The Co2+-exchanged compound, 1-Co2+, exhibits an initial enthalpy of adsorption of 10.5 kJ/mol, the highest yet observed for a microporous metal-organic framework.  相似文献   

15.
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.  相似文献   

16.
The synthesis and characterization of the new ligand 2,9-bis[N,N-bis(2-aminoethyl)aminomethyl]-1,10-phenanthroline (L) are reported. L contains two diethylenetriamine units connected on the central nitrogen atom by a 1,10-phenanthroline group forming a symmetrical branched ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) in aqueous solution were determined by means of potentiometric, UV-vis, fluorescence, and 1H and 13C NMR techniques. L behaves as pentaprotic base under the experimental conditions used; from HL+ to H4L4+ species it is the secondary amine functions that are protonated while in the H5L5+ species also the phenanthroline is involved in protonation. L does not show fluorescence properties in the range of pH (0-14) investigated. It forms both mono- and dinuclear stable species where the phenanthroline is directly involved with both nitrogens in the coordination of the first metal which is coordinated in a pentacoordination environment also by one dien unit. The other dien unit undergoes easy protonation in the mononuclear complex while it binds the second metal in the dinuclear species. For this reason, L, in providing two different binding areas for metal coordination, behaves as an unsymmetrical compartmental ligand; one area is formed by one dien unit and by the phenanthroline, and the other by the remaining dien unit. This produces unsymmetrical metal complexes both for the mono- and dinuclear species; however, the role of the binding areas is fast exchanging in aqueous solution, at least on the NMR time scale. Solution studies and the three crystal structures of the [Zn(H2L)]4+, [[Cu(H2L)](ClO4)]3+, and [[Cu2LCl2](ClO4)]+ species highlight the unsymmetrical compartmental behavior of L as well as the host properties of the complexes in adding exogenous ligands such as hydroxide, pherchlorate, and chloride anions.  相似文献   

17.
The dinuclear Cu2+ and Zn2+ as well as the mixed Cu2+-Zn2+ complexes of a 5,5'-pentaazaterpyridinophane ligand (L) are able to incorporate imidazolate (Im-) as a bridging ligand. The crystal structure of [Cu(2)L(Im)(Br)(H2O)](CF(3)SO(3))(2).3H2O (1) shows one copper coordinated by the three pyridine nitrogens of the terpyridine unit, one nitrogen of the imidazolate bridge (Im-) and one bromide anion occupying the axial position of a distorted square pyramid. The second copper atom is coordinated by the remaining imidazolate nitrogen, the three secondary nitrogens at the centre of the polyamine bridge and one water molecule that occupies the axial position. Magnetic measurements have been performed in the 2.0-300.0 K temperature range. Experimental data could be satisfactorily reproduced by using an isotropic exchange model H = -JS(1)S(2) with J = -52.3 cm(-1) and g = 2.09. Potentiometric studies have provided details of the speciation and stability constants for the mixed Cu2+-L-HIm, Zn2+-L-HIm (HIm = imidazole) and Cu2+-Zn2+-L-HIm systems. The apparent stability constant obtained at pH = 9 for the addition of imidazole to the dinuclear Cu2+ complexes is one of the highest so far reported (log K = 7.5). UV-Vis spectroscopy and paramagnetic NMR data show that imidazole coordinates to the Cu2+ ions as a bridging imidazolate ligand from pH 5 to 10. Electrochemical reduction of the Cu2+-Zn2+-L complex occurs in two successive one-electron per copper ion quasi-reversible steps. The formal potential of the Cu2+-Zn2+-L/Cu+-Zn2+-L couple is close to that of SOD. The IC50 values measured at pH 7.8 by means of the nitro blue tetrazolium method show significant SOD activity for the dinuclear Cu2+ complexes (IC50 = 2.5 microM) and moderate activity for the Cu2+-Zn2+ mixed systems (IC50 = 30 microM).  相似文献   

18.
The acidity constants of 3-fold protonated 9-[2-(2-phosphonoethoxy)ethyl]adenine, H3(PEEA)+, and of 2-fold protonated (2-phosphonoethoxy)ethane, H2(PEE), and the stability constants of the M(H;PEEA)+, M(PEEA), and M(PEE) complexes with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ have been determined (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO3). It is concluded that in the M(H;PEEA)+ species, the proton is at the phosphonate group and the metal ion at the adenine residue. The application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3))H for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue that does not affect metal-ion binding, proves that the M(PEEA) complexes of Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ as well as the M(PEE) complexes of Co2+, Cu2+, and Zn2+ have larger stabilities than is expected for a sole phosphonate coordination of M2+. For the M2+ complexes without an enhanced stability (e.g., Mg2+ or Mn2+), it is concluded that M2+ binds in a monodentate fashion to the phosphonate group of the two ligands. Combination of all of the results allows the following conclusions: (i) The increased stability of the Co(PEE), Cu(PEE), Zn(PEE), and Co(PEEA) complexes is due to the formation of six-membered chelates involving the ether-oxygen atom of the aliphatic residue (-CH2-O-CH2CH2-PO3(2-)) of the ligands with formation degrees of about 15-30%. (ii) Cd(PEEA) forms a macrochelate with N7 of the adenine residue (formation degree about 30%); Ni(PEEA) has similar properties. (iii) With Zn(PEEA), both mentioned types of chelates are observed, that is, Zn(PEEA)(cl/O) and Zn(PEEA)(cl/N7), with formation degrees of about 13 and 41%, respectively; the remaining 46% is due to the "open" isomer Zn(PEEA)(op) in which the metal ion binds only to the PO3(2-) group. (iv) Most remarkable is Cu(PEEA) because a fourth isomer, Cu(PEEA)(cl/O/N3), is formed that contains a six-membered ring involving the ether oxygen next to the phosphonate group and also a seven-membered ring involving N3 of the adenine residue with a very significant formation degree of about 50%. Hence, PEEA(2-) is a truly ambivalent ligand, its properties being strongly dependent on the kind of metal ion involved. Comparisons with M2+ complexes formed by the dianions of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and related ligands reveal that five-membered chelates involving an ether-oxygen atom are considerably more stable than the corresponding six-membered ones. This observation offers an explanation of why PMEA is a nucleotide analogue with excellent antiviral properties and PEEA is not.  相似文献   

19.
The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal ions with an ionic radius close to 1.0 A, particularly Cd(II), Gd(III), and Bi(III), and low affinity for small metal ions such as Ni(II) and Zn(II). The complexes of several metal ions, such as Cd(II), Gd(III), and Pb(II), showed an equilibrium involving deprotonation of the complex at remarkably low pH values, which was attributed to deprotonation of coordinated water molecules according to: [M(DPP)(H2O)]n+ <==> [M(DPP)(OH)](n-1)+ + H+. The tendency to deprotonation of these DPP complexes at low pH is discussed in terms of the large hydrophobic surface of the coordinated DPP ligand destabilizing the hydration of coordinated water molecules and the build-up of charge on the metal ion in its DPP complex because of the inability of the coordinated DPP ligand to hydrogen bond with the solvent.  相似文献   

20.
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号