首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu QF  Chen JX  Zhang WH  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(10):4055-4064
Approaches to the assembly of (eta5-C5Me5)WS3Cu3-based supramolecular compounds from two preformed incomplete cubane-like clusters [PPh4][(eta5-C5Me5)WS3(CuX)3] (X = CN, 1a; X = Br, 1b) have been investigated. Treatment of 1a with LiBr/1,4-pyrazine (1,4-pyz), pyridine (py), LiCl/py, or 4,4'-bipyridine (4,4'-bipy) and treatment of 1b with 4,4'-bipy gave rise to a new set of W/Cu/S cluster-based compounds, [Li[((eta5-C5Me5)WS3Cu3(mu3-Br))2(mu-CN)3].C6H6]infinity (2), [(eta5-C5Me5)WS3Cu3(mu-CN)2(py)]infinity (3), [[PPh4][(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)].py]infinity (4), [PPh4]2[(eta5-C5Me5)WS3Cu3(CN)2]2(mu-CN)2.(4,4'-bipy) (5), and [[(eta5-C5Me5)WS3Cu3Br(mu-Br)(4,4'-bipy)].Et2O]infinity (6). The structures of 2-6 have been characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Compound 2 displays a 1D ladder-shaped chain structure built of square-like [[(eta5-C5Me5)WS3Cu3(mu3-Br)(mu-CN)]4](mu-CN)2(2-) anions via two pairs of Cu-mu-CN-Cu bridges. Compound 3 consists of a single 3D diamond-like network in which each (eta5-C5Me5)WS3Cu3 unit, serving as a tetrahedral node, interconnects with four other nearby units through Cu-mu-CN-Cu bridges. Compound 4 contains a 1D zigzag chain array made of cubane-like [(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)]- anions linked by a couple of Cu-mu-CN-Cu bridges. Compound 5 contains a dimeric structure in which the two incomplete cubane-like [(eta5-C5Me5)WS3(CuCN)2(mu-CN)]- anions are strongly held together via a pair of Cu-mu-CN-Cu bridges. Compound 6 contains a 2D brick-wall layer structure in which dimers of [(eta5-C5Me5)WS3Cu3Br(4,4'-bipy)]2 are interconnected via four Cu-mu-Br-Cu bridges. The successful construction of (eta5-C5Me5)WS3Cu3-based supramolecular compounds 2-6 from the geometry-fixed clusters 1a and 1b may expand the scope of the rational design and construction of cluster-based supramolecular assemblies.  相似文献   

2.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

3.
The Conjugative Bridging of Organometallic Reaction Centers in Heterodinuclear Complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)]+, M = Rh or Ir ‐ Spectroscopic Consequences of Reductive Activation Heterodinuclear complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)](PF6), M = Rh or Ir and L = 2, 5‐bis(1‐phenyliminoethyl)pyrazine (bpip), 3, 6‐bis(2‐pyridyl)‐1, 2, 4, 5‐tetrazine (bptz) or 2, 2′‐bipyrimidine (bpym), were synthesized via mononuclear rhenium compounds (L)Re(CO)3Cl. The stepwise reductive activation under chloride dissociation was studied through cyclic voltammetry and spectroelectrochemistry in the range of CO stretching vibrations (IR), charge transfer absorptions (UV/Vis) and electron spin resonance (ESR) for paramagnetic intermediates of the mono‐ and heterodinuclear compounds. While complexes of bpip and bptz form one‐electron reduced radical intermediates [(OC)3ClRe(μ‐L)MCl(C5Me5)] ˙ , the compounds with bpym react under MCl‐dissociative two‐electron reduction directly to [(OC)3ClRe(μ‐L)M(C5Me5)].  相似文献   

4.
The half-sandwich compounds [(eta(5)-C(5)Me(5))BeX] (X=Cl, 1 a; Br, 1 b), readily prepared from the reaction of the halides BeX(2) and M[C(5)Me(5)] (M=Na or K), are useful synthons for other (eta(5)-C(5)Me(5))Be organometallic compounds, including the alkyl derivatives [(eta(5)-C(5)Me(5))BeR] (R=Me, 2 a; CMe(3), 2 b; CH(2)CMe(3), 2 c; CH(2)Ph, 2 d). The latter compounds can be obtained by metathetical exchange of the halides 1 with the corresponding lithium reagent and exhibit NMR signals and other properties in accord with the proposed formulation. Attempts to make [(eta(5)-C(5)Me(5))BeH] have proved fruitless, probably due to instability of the hydride toward disproportionation into [Be(C(5)Me(5))(2)] and BeH(2). The half-sandwich iminoacyl [(eta(5)-C(5)Me(5))Be(C(NXyl)Cp')] and [(eta(5)-C(5)Me(4)H)Be(C(NXyl)Cp')]3, 6 where Xyl=C(6)H(3)-2,6-Me(2) and Cp'=C(5)Me(5) or C(5)Me(4)H, are formed when the beryllocenes [Be(C(5)Me(5))(2)], [Be(C(5)Me(4)H)(2)], and [Be(C(5)Me(5))(C(5)Me(4)H)] are allowed to react with CNXyl. Isolation of three different iminoacyl isomers from the reaction of the mixed-ring beryllocene [(eta(5)-C(5)Me(5))Be(eta(1)-C(5)Me(4)H)] and CNXyl, namely compounds 5 a, 5 b, and 6, provides compelling evidence for the existence in solution of different beryllocene isomers, generated in the course of two very facile processes that explain the solution dynamics of these metallocenes, that is the 1,5-sigmatropic shift of the Be(eta(5)-Cp') unit around the periphery of the eta(1)-Cp' ring, and the molecular inversion rearrangement that exchanges the roles of the two rings.  相似文献   

5.
Coordinatively unsaturated diruthenium complexes, [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+, of which crystallography revealed structures bearing a bridging amidinate ligand perpendicular to the Ru-Ru axis, were synthesized by anion exchange of [(eta5-C3Me5(Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+ Br- by weakly coordinating anions. Variable-temperature NMR showed rapid motion of the bridging amidinate ligand. The coordinatively unsaturated nature of the cationic complexes provides their high reactivity toward a series of two electron donor ligands. Oxidative addition of molecular hydrogen occurred to give [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)(mu-H)Ru(eta5-C5Me5)(H)]+, which was isolated and characterized.  相似文献   

6.
Products from the reaction of + nido ten-vertex : nido eight-vertex, B(16)H(20) with [{(IrCl(2)(eta(5)-C(5)Me(5))}(2)] and tmnd show unanticipated rearrangement of the starting {B(16)} skeleton, as exhibited by + nido ten-vertex : nido ten-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(17)Cl] which has a {B(2)} edge conjunction and by + nido ten-vertex : nido eleven-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(15)Cl] which has a {B(3)} face conjunction.  相似文献   

7.
The mixed-ring beryllocene Be(C5Me5)(C5Me4H), that contains eta 5-C5Me5 and eta 1-C5Me4H rings, the latter bonded to the metal through the CH carbon atom (X-ray crystal structure) reacts at room temperature with CNXyl (Xyl = C6H3-2,6-Me2) to give an iminoacyl product, Be(eta 5-C5Me4H)[C(NXyl)C5Me5] derived from the inverted beryllocene structure Be (eta 5-C5Me4H)(eta 1-C5Me5).  相似文献   

8.
The dication [(eta6-C6Me6)Ru(eta6-C20H10)]2+ in propylene carbonate solution exhibits a sequence of reduction processes that is either metal-centered [Ru(II)/Ru(I)/Ru(0)] or ligand-centered. The marginally stable Ru(I) monocation [(eta6-C6Me6)Ru(eta6-C20H10)]+ has been characterized by EPR spectroscopy. The electrochemistry of C20H10 and EPR features of its stable monoanion [C20H10]- have also been revisited.  相似文献   

9.
Addition of PMe2Ph to fused-cluster syn-[(eta5-C5Me5)IrB18H20] 1 to give [(eta5-C5Me5)HIrB18H19(PMe2Ph)] 3 entails a diminution in the degree of intimacy of the intercluster fusion, rather than retention of inter-subcluster binding intimacy and a nido-->arachno conversion of the character of either of the subclusters. Reaction with MeNC gives [(eta5-C5Me5)HIrB18H19[C(NHMe)2]] 4 which has a similar structure, but with the ligand now being the carbene [:C(NHMe)2], resulting from a reductive assembly reaction involving two MeNC residues and the loss of a carbon atom.  相似文献   

10.
Zhang WH  Song YL  Ren ZG  Li HX  Li LL  Zhang Y  Lang JP 《Inorganic chemistry》2007,46(16):6647-6660
The assembly of a new family of [(eta5-C5Me5)MoS3Cu3]-supported supramolecular compounds from a preformed cluster [PPh4][(eta5-C5Me5)MoS3(CuNCS)3].DMF (1.DMF) with four multitopic ligands with different symmetries is described. Reactions of 1 with 1,2-bis(4-pyridyl)ethane (bpe) (Cs symmetry) or 1,4-pyrazine (1,4-pyz) (D2h symmetry) in aniline gave rise to two polymeric clusters {[{(eta5-C5Me5)MoS3Cu3}2(NCS)3(mu-NCS)(bpe)3].3aniline}n (2) and [(eta5-C5Me5)MoS3Cu3(1,4-pyz)(mu-NCS)2]n (3). On the other hand, solid-state reactions of 1 with 2,4,6-tri(4-pyridyl)-1,3,5-triazine (tpt) (D3h symmetry) or 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (H2tpyp) (D4h symmetry if 21H and 23H of the H2tpyp are omitted) at 100 degrees C for 12 h followed by extraction with aniline yielded another two polymeric clusters {[(eta5-C5Me5)MoS3Cu3(tpt)(aniline)(NCS)2].0.75aniline. 0.5H2O}n (4) and {[(eta5-C5Me5)MoS3Cu3(NCS)(mu-NCS)(H2tpyp)0.4(Cu-tpyp)0.1].2aniline.2.5benzene}n (5). These compounds were characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and X-ray analysis. Compound 2 consists of a 2D (6,3) network in which [(eta5-C5Me5)MoS3Cu3] cores serve both a T-shaped three-connecting node and an angular two-connecting node to interconnect other equivalent units through single bpe bridges, double bpe bridges, and mu-NCS bridges. Compound 3 has a 3D diamondlike framework in which each [(eta5-C5Me5)MoS3Cu3] core, acting as a tetrahedral connecting node, links four other neighboring units by 1,4-pyz bridges and mu-NCS bridges. Compound 4 contains a honeycomb 2D (6,3)core(6,3)tpt network in which each cluster core, serving a trigonal-planar three-connecting node, links three pairs of equivalent cluster cores via three tpt lignads. Compound 5 has a rare scalelike 2D (4,62)core(42,62)ligand network in which each cluster core acts as a T-shaped three-connecting node to link with other equivalent ones through mu-NCS bridges and H2tpyp (or Cu-tpyp) ligands. The results showed that the formation of the four different multidimensional topological structures was evidently affected by the symmetry of the ligands used. In addition, the third-order nonlinear optical properties of 1-5 in aniline were also investigated by using Z-scan techniques at 532 nm.  相似文献   

11.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

12.
The capacity of the imido-nitrido organometallic ligand [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) to entrap main group metal halides MXn has been investigated. Treatment of 1 with metal halides in toluene or dichloromethane afforded several soluble adducts [MXn(L)] (L=1) in good yields. The reaction of 1 with one equivalent of Group 1 and 13 monohalides MX afforded single cube-type complexes [XM{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Li, X=Br (2), I (3); M=Na, X=I (4); M=In, X=I (5); M=Tl, X=I (6)). Analogous treatment of 1 with Group 2 and 14 dihalides MX(2) gave the corresponding adducts [I2M{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Mg (7), Ca (8), Sr (9)) and [Cl(2)M{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Sn (10), Pb (11)). The treatment of 1 with SnI2 or the reaction of 10 with MeI at 60 degrees C afforded two azametallocubane units linked by two bridging iodine atoms [{ISn(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}2(mu-I)2] (12). Indium triiodide reacted with 1 in toluene to form the adduct [I3In(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)] (13). Density functional theory calculations have been carried out to study these processes and evaluate the influence of the solvent. X-ray crystal structure determinations have been performed for complexes 10, 12, and 13.  相似文献   

13.
The construction of a new set of [(eta5-C5Me5)MoS3Cu3]-based supramolecular compounds with different one-dimensional (1D) arrays from two preformed clusters [PPh4][(eta5-C5Me5)MoS3(CuX)3] (X = Br (1a), NCS (1b)) with 1,2-bis(4-pyridyl)ethane (bpe) and 1,3-bis(4-pyridyl)propane (bpp) is presented. Reactions of 1a with bpe in different molar ratios afforded ([((eta5-C5Me5)MoS3Cu3) 2(mu-bpe)3.5Br4].MeCN) n (2), ([((eta5-C5Me5)MoS3Cu3)2(mu-bpe)3Br4].Sol)n (3a: Sol = DMSO.3MeCN; 3b: Sol = 2aniline.3MeCN), ([((eta5-C 5Me5)MoS3Cu3)2(mu-bpe)3(bpe)Br4].0.35DMF)n (4), and ([((eta5-C5Me5)MoS3Cu3)2(mu-bpe)2(mu-Br)(mu3-Br)Br2].DMF.MeCN)n (5). On the other hand, treatment of 1a or 1b with bpp produced [(eta5-C5Me5)MoS3Cu3(mu-bpp)(mu-Br)Br]n (6) and ([((eta5-C5Me5)MoS3Cu3)2(mu-bpp)3(mu-NCS)2(NCS)](NCS))n (7). Compounds 2-7 have been characterized by elemental analysis, UV-vis spectroscopy, IR spectroscopy, 1H NMR, and X-ray analysis. In 2, each [(eta5-C5Me5)MoS3Cu3] core serves as an angular two-connecting node to link other equivalent cores by single and double bpe bridges to form a 1D "Great Wall"-like chain. In 3a and 3b, the [(eta5-C5Me5)MoS3Cu3] cores are linked alternatively by single and double bpe bridges to give a 1D zigzag chain. In 4, six cluster cores (two as a two-connecting node and four as a three-connecting node) are connected by four single bpe and two double bpe bridges to form a cyclohexane-shaped repeating unit, which is further fused with other units to generate a 1D double-stranded chain. Compound 5 has a simple 1D zigzag chain consisting of the cluster cores linked by single bpe bridges. In 6, the cluster cores are linked by single bpp bridges to give a 1D helical chain, which further holds two symmetry-related chains through C-H...Br hydrogen-bonding interactions, thereby forming a 1D H-bonded triple-stranded chain. Compound 7 has a rare 1D quadruple chain, in which the [(eta5-C5Me5)MoS3Cu3] cores work as planar four- and five-connecting nodes to interconnect other equivalent cores through single bpp bridges and single and double thiocyanate bridges. In addition, the third-order nonlinear optical properties of 1a, 2, 3a, and 4-7 in aniline were also investigated by using the Z-scan technique with a 4.5 ns pulse laser at 532 nm.  相似文献   

14.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

15.
A comparative synthetic, structural, and thermochemical study on a series of chelate complexes containing the fragment (eta 5-C5Me5)Ir [(eta 5-C5Me5)Ir(TsNCH2CH2NTs) (1), (eta 5-C5Me5)Ir(TsNCH2CO2) (2), (eta 5-C5Me5)Ir(CO2CO2) (3)] was performed to clarify the roles of carboxylato and sulfonamido ligands. Whereas 1 and 2 are monomeric in solution and in the solid state, 3 appears to exist as an oligomer or polymer, (3)n, which can be broken up by addition of a ligand L such as a phosphine, CO, or 2-methoxypyridine to form (eta 5-C5Me5)Ir(L)(CO2CO2) (6). The synthesis of (3)n from [(eta 5-C5Me5)IrCl(mu-Cl)]2 required the use of silver oxalate in CH3CN, but if other solvents were used, the bridging oxalato complex (eta 5-C5Me5)IrCl(mu-eta 2-eta 2-C2O4)ClIr(eta 5-C5Me5) (7) was obtained and identified by X-ray diffraction. Enthalpies for reaction of THF-soluble monomers 1 and 2 with PMe3 were determined to be -28.7(0.5) and -28.5(0.4) kcal mol-1, respectively. The oligomerization behavior of 3 may be a result of reduced sigma- or pi-donation of carboxylato ligands compared to N-tosylamido ligands, because the values for nu CO in oxalato and bissulfonamido complexes 6-CO and (eta 5-C5Me5)Ir(CO)(TsNCH2CH2NTs) (4-CO) were 2064 and 2042 cm-1, respectively.  相似文献   

16.
Treatment of [{TiCp*(mu-NH)} 3(mu 3-N)] ( 1; Cp* = eta (5)-C 5Me 5) with yttrium and erbium halide complexes [MCl 3(THF) 3.5] and [MCpCl 2(THF) 3] (Cp = eta (5)-C 5H 5) gives cube-type adducts [Cl 3M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] and [CpCl 2M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}]. An analogous reaction of 1 with [{MCp 2Cl} 2] in toluene affords [Cp 3M(mu-Cl)ClCpM{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] (M = Y, Er).  相似文献   

17.
The rhodium and iridium Lewis-acid cations [(eta(5)-C(5)Me(5))M{(R)-Prophos}(H(2)O)](2+) ((R)-Prophos = 1,2-bis(diphenylphosphino)propane) efficiently catalyze the enantioselective 1,3-dipolar cycloaddition of nitrones to methacrolein. Reactions occur with perfect endo selectivity and with enantiomeric excesses up to 96%. Intermediates [(eta(5)-C(5)Me(5))M{(R)-Prophos}(methacrolein)](SbF(6))(2) (M = Rh (3), Ir (4)) have been spectroscopically and crystallographically characterized. The nitrone complexes [(eta(5)-C(5)Me(5))M{(R)-Prophos}(nitrone)](SbF(6))(2) (M = Rh, nitrone = 1-pyrrolidine N-oxide (5), 2,3,4,5,-tetrahydropyridine N-oxide (6), 3,4-dihydroisoquinoline N-oxide (7); M = Ir, nitrone = 1-pyrrolidine N-oxide (8)) have been isolated and characterized including the X-ray crystal structure of compounds 6 and 8. The equilibrium between methacrolein and nitrone complexes is also studied. [Ir]-adduct complexes are detected by (31)P NMR spectroscopy. A catalytic cycle involving [M]-methacrolein, [M]-nitrone, as well as [M]-adduct species is proposed, the first complex being the true catalyst. The absolute configuration of the adduct 4-methyl-2-N,3-diphenyl-isoxazolidine-4-carbaldehyde (9) was determined through its (S)-(-)-alpha-methylbenzylamine derivative diastereomer. Structural parameters strongly suggest that the disposition of the methacrolein in 3 and 4 is fixed by CH/pi attractive interactions between the pro-S phenyl ring of the Ph(2)PCH(CH(3)) moiety of the (R)-Prophos ligand and the CHO aldehyde proton. Proton NMR data indicate that this conformation is maintained in solution. From the structural data and the results of catalysis the origin of the enantioselectivity is discussed.  相似文献   

18.
Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.  相似文献   

19.
While, in general, decamethylzincocene, Zn(C5Me5)2, and other zincocenes, Zn(C5Me4R)2 (R = H, But, SiMe3), react with dialkyl and diaryl derivatives, ZnR'2, to give the half-sandwich compounds (eta5-C5Me4R)ZnR', under certain conditions the reactions of Zn(C5Me5)2 with ZnEt2 or ZnPh2 produce unexpectedly the dizincocene Zn2(eta5-C5Me5)2 (1) in low yields, most likely as a result of the coupling of two (eta5-C5Me5)Zn* radicals. An improved, large scale (ca. 2 g) synthesis of 1 has been achieved by reduction of equimolar mixtures of Zn(C5Me5)2 and ZnCl2 with KH in tetrahydrofuran. The analogous reduction of Zn(C5Me4R)2 (R = H, SiMe3, But) yields only decomposition products, but the isotopically labeled dimetallocene 68Zn2(eta5-C5Me5)2 and the related compound Zn2(eta5-C5Me4Et)2 (2) have been obtained by this procedure. Compound 2 has lower thermal stability than 1, but it has been unequivocally characterized by low-temperature X-ray diffraction studies. As for 1 a combination of structural characterization techniques has provided unambiguous evidence for its formulation as the Zn-Zn bonded dimer Zn2(eta5-C5Me4Et)2, with a short Zn-Zn bond of 2.295(3) A indicative of a strong Zn-Zn bonding interaction. The electronic structure and the bonding properties of 1 and those of related dizincocenes Zn2(eta5-Cp')2 have been studied by DFT methods (B3LYP level), with computed bond distances and angles for dizincocene 1 very similar to the experimental values. The Zn-Zn bond is strong (ca. 62 kcal.mol-1 for 1) and resides in the HOMO-4, that has a contribution of Zn orbitals close to 60%, consisting mostly of the Zn 4s orbitals (more than 96%).  相似文献   

20.
The measured Raman and IR spectra of solid, polycrystalline bis(pentamethylcyclopentadienyl)dizinc, (eta(5)-C5Me5)2Zn2, 1, and bis(pentamethylcyclopentadienyl)monozinc, (eta(5)-C5Me5)(eta(1)-C5Me5)Zn, 8, are reported in some detail. The IR spectra of the vapors of 1 and 8 each trapped in a solid Ar matrix at 12 K confirm the essentially molecular character of the solids. The experimental results have been interpreted with particular reference (i) to the corresponding spectra of (68)Zn-enriched samples of the compounds, and (ii) to the spectra simulated by density functional theory (DFT) calculations at the B3LYP level. The marked differences of structure of 1 and 8 contrast with the relatively close similarity of their vibrational spectra, disparities being revealed only on detailed scrutiny, including the effects of (68)Zn enrichment, and primarily at wavenumbers below 1000 cm(-1). The Zn-Zn stretching motion of 1 features not as a single, well-defined mode identifiable with intense Raman scattering but in several normal modes which respond in varying degrees to (68)Zn substitution. A stretching force constant of 1.42 mdyne A(-1) has been estimated for the Zn-Zn bond of 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号