首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of the nickel metalloligands [EtN2S2]Ni (EtN2S2, N,N'-diethyl-3,7-diazanonane-1,9-dithiolate) or K2[Ni(phmi)] (phmi, N,N'-1,2-phenylenebis(2-sulfanyl-2-methylpropionamide)) with [Cu(CH3CN)4]BF4 yields polynuclear complexes in which two copper(I) ions are bridged by the nickel metalloligands. Alternatively, reaction with the Cu(I) source, [(PhTttBu)Cu] (PhTttBu, phenyltris((tert-butylthio)methyl)borate), generates discrete binuclear NiCu complexes that may serve as models of the acetyl coenzyme A synthase active site. The binuclear species react reversibly with CO via rupture of the thiolate bridges.  相似文献   

2.
Cho J  Yap GP  Riordan CG 《Inorganic chemistry》2007,46(26):11308-11315
A series of high-spin thiolatonickel(II) complexes, [PhTttBu]Ni(SR) (PhTttBu = phenyltris((tert-butylthio)methyl)borate; 2, R = triphenylmethyl; 3, R = pentafluorophenyl; 4, R = phenyl), were synthesized via the reaction of [PhTttBu]Ni(NO3) (1) with thiols (RSH) in the presence of triethylamine. The [PhTttBu]Ni(SR) products were isolated and characterized by various physicochemical measurements including X-ray diffraction analyses. These thiolatonickel(II) complexes have a distorted trigonal pyramidal geometry with somewhat different tau values: 0.80 and 0.90 for two crystalline phases of 2, 0.74 for 3, and 0.69 for 4, where tau is a normalized measure of pyramidalization (tau = 0 for tetrahedron, tau = 1 for trigonal pyramid). The electronic absorption spectra display characteristic sulfur-to-nickel(II) charge transfer (CT) bands at 532 nm (7500 M(-1) cm(-1)) for 2, 510 nm (4800 M(-1) cm(-1)) for 3, and 569 nm (4100 M(-1) cm(-1)) for 4. The cyclic voltammograms show a quasi-reversible redox couple at E1/2 = -1.11 V for 2, and reversible redox couples at E1/2 = -1.03 V for 3 and E1/2 = -1.17 V for 4 (vs Fc+/Fc). Correlation between the tau value and the CT intensity was observed: the strong CT intensity results from the high tau value, which provides for strong orbital overlap (2 > 3 > 4). Additionally, the CT transition energy correlates with the reduction potential: both the CT transition energy and potential decrease in the order 3 > 2 > 4, consistent with the influence of decreasing electron withdrawing abilities, R = pentafluorophenyl > triphenylmethyl > phenyl. The three thiolatonickel complexes exhibit dramatically different thermal stabilities. Complex 4 is the least stable, undergoing decomposition to [kappa2-PhBttBuSPh]Ni(eta2-CH2SBut) (5) via net exchange of Ni-SPh and B-CH2SBut groups.  相似文献   

3.
Copper(I) complexes of the tridentate thioether ligands [PhB(CH(2)SCH(3))(3)] (abbreviated PhTt), [PhB(CH(2)SPh)(3)] (PhTt(Ph)), [PhB(CH(2)S(t)()Bu)(3)] (PhTt(t)()(Bu)), and [PhB(CH(2)S(p)()Tol)(3)] (PhTt(p)()(Tol)) and bidentate thioether ligands [Ph(2)B(CH(2)SCH(3))(2)] (Ph(2)Bt), [Et(2)B(CH(2)SCH(3))(2)] (Et(2)Bt), and [Ph(2)B(CH(2)SPh)(2)] (Ph(2)Bt(Ph)) have been prepared and characterized. The solution and solid state structures are highly sensitive to the identity of the borato ligand employed. Ligands possessing the smaller (methylthio)methyl donors, [PhTt] and [Ph(2)Bt], yielded tetrameric species, [(PhTt)Cu](4) and [(Ph(2)Bt)Cu](4), containing both terminal and bridging thioether ligation. The ligands containing the larger (arylthio)methyl groups, [PhTt(Ph)] and [PhTt(p)()(Tol)], form monomeric [PhTt(Ar)]Cu(NCCH(3)) in solution and one-dimensional extended structures in the solid state. Each complex type reacted cleanly with acetonitrile, pyridine, or triphenylphosphine generating the corresponding four-coordinate monomer, of which [PhTt(Ph)]Cu(PPh(3)), [PhTt(p)()(Tol)]Cu(PPh(3)), and [Et(2)Bt]Cu(PPh(3))(2) have been structurally characterized.  相似文献   

4.
A series of low-coordinate, paramagnetic iron complexes in a tris(thioether) ligand environment have been prepared. Reduction of ferrous {[PhTt(tBu)]FeCl}2 [1; PhTt(tBu) = phenyltris((tert-butylthio)methyl)borate] with KC8 in the presence of PR3(R = Me or Et) yields the high-spin, monovalent iron phosphine complexes [PhTt(tBu)]Fe(PR3) (2). These complexes provide entry into other low-valent derivatives via ligand substitution. Carbonylation led to smooth formation of the low-spin dicarbonyl [PhTt(tBu)]Fe(CO)2 (3). Alternatively, replacement of PR 3 with diphenylacetylene produced the high-spin alkyne complex [PhTt(tBu)]Fe(PhCCPh) (4). Lastly, 2 equiv of adamantyl azide undergoes a 3 + 2 cycloaddition at 2, yielding high-spin dialkyltetraazadiene complex 5.  相似文献   

5.
The thioethers 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L3) and 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L4) react with PdCl2(NCMe)2 to give the dinuclear palladium thiophenolate complexes [(L3)Pd2Cl2]+ (2) and [(L4Pd2(mu-Cl)]2+ (3) (HL3= 2,6-bis((2-(dimethylamino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4 = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chloride ligands in could be replaced by neutral (NCMe) and anionic ligands (NCS-, N3-, CN-, OAc-) to give the diamagnetic Pd(II) complexes [(L3)Pd2(NCMe)2]3+ (4), [(L3)Pd2(NCS)2]+ (5), [(L3)Pd2(N3)2]+ (6), [{(L3)Pd2(mu-CN)}2]4+ (7) and [(L3)Pd2(OAc)]2+ (9). The nitrile ligands in and in [(L3)Pd2(NCCH2Cl)2]3+ are readily hydrated to give the corresponding amidato complexes [(L3)Pd2(CH3CONH)]2+ (8) and [(L3)Pd2(CH2ClCONH)]2+ (10). The reaction of [(L3)Pd2(NCMe)2]3+ with NaBPh4 gave the diphenyl complex [(L3)Pd2(Ph)2]+ (11). All complexes were either isolated as perchlorate or tetraphenylborate salts and studied by IR, 1H and 13C NMR spectroscopy. In addition, complexes 2[ClO4], 3[ClO4]2, 5[BPh4], 6[BPh4], 7[ClO4]4, 9[ClO4]2, 10[ClO4]2 and 11[BPh4] have been characterized by X-ray crystallography.  相似文献   

6.
Nickel(II) complexes of the monoanionic borato ligands [Ph2B(CH2SCH3)2] (abbreviated Ph2Bt), [Ph2B(CH2S(t)Bu)2] (Ph2Bt(tBu)), [Ph2B(1-pyrazolyl)(CH2SCH3)], and [Ph2B(1-pyrazolyl)(CH2S(t)Bu)] have been prepared and characterized. While [Ph2Bt] formed the square planar homoleptic complex, [Ph2Bt]2Ni, the larger [S2] ligand with tert-butyl substituents, [Ph2BttBu], yielded an unexpected organometallic derivative, [Ph2Bt(tBu)]Ni(eta2-CH2SBut), resulting from B-C bond rupture. The analogous thiametallacycle derived from the [S3] ligand, [PhB(CH2S(t)Bu)3] (PhTt(tBu)), has been structurally authenticated (Schebler, P. J.; Mandimutsira, B. S.; Riordan, C. G.; Liable-Sands, L.; Incarvito, C. D.; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 331). The [SN] borato ligands formed exclusively the cis stereoisomers upon reaction with Ni(II) sources, [Ph2B(1-pyrazolyl)(CH2SR)]2Ni. Analysis of the Ni(II/I) reduction potentials by cyclic voltammetry revealed a approximately 600 mV anodic shift upon replacement of two thioether donors ([Ph2Bt]2Ni) with two pyrazolyl donors ([Ph2B(1-pyrazolyl)(CH2SCH3)]2Ni) consistent with the all thioether environment stabilizing the lower oxidation state of nickel.  相似文献   

7.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

8.
The symmetric digold(II)dichloride bis(ylide) complex [Au2Cl2(mu-{CH2}2PPh2)2] reacts with acetylides to form the asymmetric heterovalent gold(I)/gold(III) complexes [AuI(mu-{CH2}2PPh2)2AuIII(CCR)2] [R = Ph, tBu, and SiMe3], the phenyl analogue of which was characterized by X-ray crystallography. These compounds represent the first examples of gold(III) complexes containing two acetylide ligands. [AuI(mu-{CH2}2PPh2)2AuIII(CCPh)2] undergoes a reversible comproportionation reaction upon treatment with [Ag(ClO4)tht] to give the symmetric digold(II) cationic complex [Au2(tht)2(mu-{CH2}2PPh2)2](ClO4)2. If this complex is treated with phenylacetylene in the presence of base, the heterovalent gold(I)/gold(III) complex is re-formed. This reversible interconversion between binuclear gold(I)/gold(III) and digold(II) bis(ylide) complexes is unprecedented.  相似文献   

9.
The new tripod ligands bis(pyrazolyl)(3-tert-butyl-2-thioimidazol-1-yl)hydroborate (L(1)) and bis(pyrazolyl)(3-isopropyl-2-thioimidazol-1-yl)hydroborate (L(2)), together with zinc nitrate or zinc chloride and the corresponding thiolates, have yielded a total of 17 zinc-thiolate complexes. These comprise aliphatic as well as aromatic thiolates and a cysteine derivative. Structure determinations have confirmed the tetrahedral ZnN(2)S(2) coordination in the complexes. Upon reaction with methyl iodide, the species L(1).Zn-SR are slowly converted to L(1).Zn-I and the free thioethers CH(3)SR. A kinetic analysis has shown these alkylations to be about 1 order of magnitude slower than those of the tris(pyrazolyl)borate complexes Tp(Ph,Me)Zn-SR. Alkylations with trimethyl phosphate were found to proceed very slowly even in DMSO at 80 degrees C.  相似文献   

10.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

11.
Reaction of the imidotitanium complexes [Ti(N(t)Bu)(N(2)N(py))(py)](1) and [Ti(N-2,6-C(6)H(3)(i)Pr(2))(N(2)N(py))(py)](2) with phenyl acetylene and tolyl acetylene in toluene gave the corresponding [2+2] cycloaddition products [Ti(N(2)N(py))[kappa(2)-N((t)Bu)CH[double bond]CR]](R = Ph:3, Tol:4) and [Ti(N(2)N(py))[kappa(2)-N(2,6-C(6)H(3)(i)Pr(2))CH[double bond]CR]](R = Ph:5, Tol: 6). Complex 6 is the first example of a key intermediate in the anti-Markovnikov addition of a primary amine to a terminal acetylene which has been structurally characterized by X-ray diffraction.  相似文献   

12.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

13.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

14.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

15.
Reaction of cyclometalated halide-bridged Pd(II) complexes 1-4 with the tertiary triphosphine ligand (Ph2PCH2CH2)2PPh (triphos) yielded complexes [((Ph2PCH2CH2)2PPh-P,P,P)Pd(N(Cy)=(H)C)C6H2(C(H)=N(Cy))Pd((Ph2PCH2CH2)2PPh-P,P,P)][ClO4]2 5, [Pd(C6H4-N=NC6H5)((Ph2PCH2CH2)2PPh-P,P,P)][ClO4] 6, and [Pd(R-C6H3C(H)=NCy)((Ph2PCH2CH2)2PPh-P,P,P)][ClO4] (7; R = 4-CHO, 8; 3-CHO). Spectroscopic and analytic data suggest five-coordination on the palladium atom, which, for complexes 5, 6, and 7, was confirmed by X-ray crystallography. The geometry around palladium may be view as a distorted trigonal bipyramid, with the palladium, nitrogen, and terminal phosphorus atoms in the equatorial plane. Compound 5 is the first doubly cyclometalated palladium(II) compound with two pentacoordinated metal centers. The structure of 6 comprises two discrete cations with slightly different geometries, showing the importance of crystal packing forces in order to determine the coordination arrangement.  相似文献   

16.
Ng JK  Tan GK  Vittal JJ  Leung PH 《Inorganic chemistry》2003,42(23):7674-7682
Two highly air-sensitive asymmetric ligands (+/-)-diphenyl[1-(1-naphthyl)ethyl]phosphine and its arsenic analogue [(+/-)-L] have been prepared and resolved by the fractionalization of a pair of diastereomeric palladium complexes containing the appropriate ligand and ortho-metalated (R)-(1-(dimethylamino)ethyl)naphthylene. X-ray structural analysis revealed that the less soluble isomers in each resolution contained the resolving ligand of the S absolute configuration. The resolved ligands coordinated as monodentates with only the phosphorus or arsenic donor coordinated to the resolving organopalladium unit. Due to the steric congestions between the phenyl and the naphthyl rings, the Ph(2)E-C distances in both monodentate ligands are unusually long [1.885(2) A for E = P and 2.035(7) A for E = As]. The (R)-naphthylamine auxiliary could be removed chemoselectively from the resolved complexes by treatment with concentrated hydrochloric acid to give the corresponding bis(micro-chloro) complexes (-)-[(S)-LPdCl(2)](2). Treatments of these dimeric complexes with sodium acetate in ethanol gave the novel ortho-metalated complex bis(micro-chloro)bis[(S)-1-[1-(diphenylphospha)ethyl]naphthylenyl-C(2),P]dipalladium(II), with [alpha](D) +559 degrees (CH(2)Cl(2)), and the analogous ortho-metalated (S)-arsa complex, with [alpha](D) +349 degrees (CH(2)Cl(2)). The Ph(2)E-C distances recorded for the ortho-metalated phosphine complex are 1.841(6) and 1.846(5) A, and those recorded for the organometallic arsa rings are 1.938(9) and 1.945(9) A. These Ph(2)E-C distances are noticeably shorter than those recorded for their analogous monodentate complexes. The intrachelate E-Pd-C angles of the analogous amino, phospha, and arsa complexes involved in the current study are similar [within the range of 80.5(2)-82.1(3) degrees ] although it is noticeable that As > P > N.  相似文献   

17.
In an attempt to prepare structural and functional models for the active site of the hydrolytic enzyme zinc phosphotriesterase, five new zinc complexes of the ligands 2,6-bis[N-(N-(carboxylmethyl)-N-((1-methylimidazol)methyl)amine)methyl]-4-methylphenolate (BCIMP) and the corresponding asymmetric ligand 2-(N-isopropyl-N-((1-methylimidazolyl)methyl)aminomethyl)-6-(N-carboxylmethyl-N-((1-methylimidazolyl)methyl)aminomethyl)-4-methylphenol (ICIMP) have been synthesized, viz. Na[Zn(2)(BCIMP)Ac(2)] (1), [Zn(2)(BCIMP)(Ph(2)Ac)] (2), [Zn(2)(ICIMP)Ac(2)] (3), [Zn(4)(ICIMP)(2)(Me(3)Ac)(2)][ClO(4)](2) (4), and [Zn(4)(ICIMP)(2)(Ph(2)Ac)(2)][ClO(4)](2) (5). The X-ray structure of complex 5 has been determined and reveals that the complex is a dimer of dimers in the solid state, which in solution dissociates to potent structural models. Studies using NMR show that only one carboxylate coligand bridges the dizinc units in the case of diphenyl acetate and pivalate, while the steric bulk of acetate is sufficiently small to permit the coordination of two acetates/dizinc unit. Functional studies involving the hydrolysis/transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) show that the complex with ICIMP (compound 5) has a significantly higher rate of catalysis than the BCIMP complex (compound 2). This is attributed to the vacant/labile coordination site that is available in the ICIMP complex but not the BCIMP complex.  相似文献   

18.
DuPont JA  Yap GP  Riordan CG 《Inorganic chemistry》2008,47(22):10700-10707
The syntheses, spectroscopic properties, and structures of the monovalent cobalt complexes, [PhTt (tBu)]Co(L), 1-L {PhTt (tBu) = phenyltris[( tert-butylthio)methyl]borate; L = PPh 3, PMe 3, PEt 3, PMe 2Ph, PMePh 2, P(OPh) 3, CNBu (t)}, are described. Complexes 1-L are prepared via the sodium amalgam reduction of [PhTt (tBu)]CoCl in the presence of L. The complexes display magnetic moments and paramagnetically shifted (1)H NMR spectra consistent with triplet, S = 1, ground states. The molecular geometries, determined by X-ray diffraction methods, reveal that some of the complexes display structures in which the L donor is moved off of the inherent 3-fold axis. In the most extreme cases (e.g., 1-P(OPh) 3 or 1-CNBu ( t )), the geometries can be described as cis-divacant octahedra. The origin of the geometric distortions is a consequence of the electronic characteristics of L as first deduced by Detrich et al. for [Tp (Np)]Co(L) ( J. Am. Chem. Soc. 1996, 118, 1703). The results establish a linear correlation between the magnitude of the structural distortion and the electronic parameter of the phosphine donor.  相似文献   

19.
The coordination chemistry of the tetrakis(thiophosphinato)resorcinarene sulfur-donor ligands [(C6H2CH{CH2CH2Ph})4{OC(O)R}4{OP(=S)Ph2}4] (L), where R = OCH2Ph, 4-C6H4CH3, C6H11, C4H3S, or OCH2CCH, is reported. Both silver(I) and gold(I) form cationic complexes of the type [LM2]2+, in which the ligand acts as a bis(chelate) in forming complexes with linear S-M-S (M = Ag or Au) stereochemistry. Gold(I) also forms the unusual complex [L(AuCl)2][LAu2]2+, which forms a supramolecular polymer through intermolecular aurophilic attractions. Palladium(II) forms the complex [LPd2Cl2(mu-Cl)2], in which the dipalladium(II) unit extends the natural bowl structure of the resorcinarene. The solid-state and solution conformations of the complexes, as determined by X-ray structure determination and NMR spectroscopy, respectively, are similar, but several complexes were found to exhibit dynamic behavior in solution, involving either conformational mobility of the resorcinarene unit or intermolecular ligand exchange.  相似文献   

20.
The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号