首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid complex Eu(C5H8NS2)3(C12H8N2) has been obtained from reaction of hydrous europium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen⋅H2O) in absolute ethanol. IR spectrum of the complex indicated that Eu3+ in the complex coordinated with sulfur atoms from the APDC and nitrogen atoms from the o-phen. TG-DTG investigation provided the evidence that the title complex was decomposed into EuS. The enthalpy change of the reaction of formation of the complex in ethanol, Δr H m θ(l), as –22.214±0.081 kJ mol–1, and the molar heat capacity of the complex, c m, as 61.676±0.651 J mol–1 K–1, at 298.15 K were determined by an RD-496 III type microcalorimeter. The enthalpy change of the reaction of formation of the complex in solid, Δr H m θ(s), was calculated as 54.527±0.314 kJ mol–1 through a thermochemistry cycle. Based on the thermodynamics and kinetics on the reaction of formation of the complex in ethanol at different temperatures, fundamental parameters, including the activation enthalpy (ΔH θ), the activation entropy (ΔS θ), the activation free energy (ΔG θ), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained. The constant-volume combustion energy of the complex, Δc U, was determined as –16937.88±9.79 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m θ, and standard enthalpy of formation, Δf H m θ, were calculated to be –16953.37±9.79 and –1708.23±10.69 kJ mol–1, respectively.  相似文献   

2.
A different thermal treatment of identical reactants (EuI2, NaCN, NaN3, and InI) leads to the formation of the three title compounds. In(0.08)Eu4(NCN)3I3 is isotypic with the reported LiEu4(NCN)3I3, Eu8I9(CN)(NCN)3 represents the first mixed cyanide-cyanamide rare-earth compound, and In(0.28)Eu12(NCN)5I(14.91) is characterized by a sandwich-like stacking motif involving Eu4-NCN double layers stuffed by a layer of vertex-sharing InI6 octahedra. The redox behavior of In is the main factor that leads to alternative product formation as a function of the temperature.  相似文献   

3.
The reaction of a 1:2 mixture of bismuth(III) salicylate with titanium(IV) isopropoxide in refluxing toluene has been investigated and found to proceed with ligand exchange to produce the new heterobimetallic complexes BiTi(4)(sal)(6)(mu-O(i)Pr)(3)(O(i)Pr)(4) (1), Bi(4)Ti(4)(sal)(10)(mu-O(i)Pr)(4)(O(i)Pr)(4) (2), and Bi(8)Ti(8)(sal)(20)(mu-O(i)Pr)(8)(O(i)Pr)(8) (3). Complex 1 is the major product, while 2 and 3 were identified as minor products from the reaction. Compound 1 is produced pure and in high yield by employing stoichiometric amounts of reagents; its crystal structure consists of a [Ti(4)(sal)(6)(O(i)Pr)(7)](3)(-) ion capped by a Bi(3+) ion. Complexes 2 and 3 exhibit cyclic ring structures of bismuth and titanium atoms showing crystallographically imposed inversion symmetry. Both structures occlude large quantities of lattice solvent. The compositional and structural parameters from the single crystal studies indicate that complexes 2 and 3 may represent sequential steps in a ligand exchange process between the two metal species, while the reactivity patterns that were observed provide clues about the solution state structure of bismuth(III) salicylate itself. The 2D COSY (1)H NMR spectrum of 1 indicates retention of the asymmetric structure in solution as evidenced by the presence of 14 diastereotopic isopropoxide methyl resonances.  相似文献   

4.
The cationic cyclen based Eu(III)-phen conjugated 1.Eu was synthesised as a chemosensor for Cu(II), where the recognition in water at pH 7.4 gave rise to quenching of the Eu(III) luminescence and the formation of tetranuclear polymetallic Cu(II)-Eu(III) macrocyclic complexes in solution where Cu(II) was bound by three 1.Eu conjugates.  相似文献   

5.
The luminescent materials SrB4O7: Eu and BaB8O13: Eu were synthesized, and the valence states of europium in the materials were measured by means of XANES at Eu-L3 edge. It is found that the Eu3 and Eu2 ions are all present in the materials, and more Eu3 ions can be reduced in SrB4O7: Eu than in BaB8O13:Eu. The excitation and emission spectra of Eu3 in SrB4O7: Eu and BaB8O13:Eu were determined.  相似文献   

6.
Reaction of the potassium salt of iPrNHC(S)NHP(S)(OiPr)(2) (HL) with AgPF(6) leads to the hexanuclear [{Ag(3)(iPrNHC(S)NP(S)(OiPr)(2)-S,S')(3)}(2)] ([(Ag(3)L(3))(2)]) complex. The reversible conversion between yellow-emitting ([(Ag(3)L(3))(2)]) and blue-emitting ([Ag(3)L(3)]) materials on grinding and recrystallization was established. [Ag(3)L(3)] was also prepared by a mechanically induced solid-state reaction.  相似文献   

7.
8.
9.
10.
11.
12.
Summary The reactions of ReOX3(PPh3)2 (X = CI or Br) withN-methylsalicylideneimine (Me-saIH),N-phenylsalicylideneimine (Ph-saIH),N,N-ethylenebis(salicyli(leneimine) [(SaIH)2en] and 8-hvdroxyquinoline (Oxinell) are here reported. They give rise to the ReOX2(Me-sal)PPh2. ReOX-(Me-sal)2, ReOX2(Ph-sal)PPh3, ReOX(Ph-sal),, Re2O2X4-(Sal2en)(PPh3)2, ReOX2(Oxine)PPh, and ReOX(Oxine)2 complexes.  相似文献   

13.
Primary and secondary alcohols react with vinyl or isopropenyl acetate at room temperature in the presence of catalytic amounts (0.05-1 mol %) of Y5(OiPr)13O to give the corresponding esters. In selected cases, the yttrium catalyst promotes the selective O-acylation of amino alcohols without the formation of the amide. Enol esters also react with alpha-amino acid esters in the absence of a catalyst, at room temperature, to give the corresponding amides.  相似文献   

14.
The bridging phosphinidene complexes [Mn2(CO)8(micro-PNiPr2)] and [Co2(CO)4(micro-dppm)(micro-PNR2)](NR2=NiPr2, TMP) react with heterocumulenes RN3, CH2N2 and Ph2C=N=N to form complexes with micro-eta1,eta2-aminophosphaimine, micro-eta1,eta2-aminophosphaalkene and micro-eta1,eta2-aminophosphadiphenylmethylazaimine ligands, respectively.  相似文献   

15.
The fluorinated phenoxide OC6F5 forms the stable Eu(II) and Eu(III) derivatives (DME)2Eu(mu-OC6F5)3Eu(mu-OC6F5)3Eu(DME)2 and (DME)2Eu(OC6F5)3, as well as the heterovalent product (DME)2Eu(mu-OC6F5)3Eu(DME)(OC6F5)2, in redox reactions of Eu with HOC6F5 or in proton-transfer reactions of HOC6F5 with Eu(SPh)2. The divalent complex crystallizes as a trimer with three bridging phenoxides bridging each pair of metals, with the terminal metals coordinating DME and the central metal ion encapsulated totally by O(C6F5) and dative fluoride interactions. The trivalent compound is monomeric with terminal phenoxide ligands and no Eu-F interactions. The heterovalent compound has clearly localized metal valence states and coordination features that mimic the homovalent species with the terminal OC6F5 bound to the Eu(III) ion, three bridging OR ligands spanning the Eu(II) and Eu(III) ions, and dative Eu(II)-F bonds. At elevated temperatures, these compounds decompose to give a mixture of solid-state fluoride phases.  相似文献   

16.
Eu8(NCN)4.95I6.10 is the first compound with discrete tritetrahedral Eu8 clusters which are interconnected by coordinating NCN2- carbodiimide anions on their triangular faces to form separated layers, the latter being bridged by iodide and carbodiimide anions.  相似文献   

17.
In a new oxidative route, Ag(+)[Al(OR(F))(4)](-) (R(F)=C(CF(3))(3)) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)(n)](+) salts (n=2, 3) with the weakly coordinating [Al(OR(F))(4)](-) anion in quantitative yield. The In(+) salt and the known analogous Ga(+)[Al(OR(F))(4)](-) were used to synthesize a series of homoleptic PR(3) phosphane complexes [M(PR(3))(n)](+), that is, the weakly PPh(3)-bridged [(Ph(3)P)(3)In-(PPh(3))-In(PPh(3))(3)](2+) that essentially contains two independent [In(PPh(3))(3)](+) cations or, with increasing bulk of the phosphane, the carbene-analogous [M(PtBu(3))(2)](+) (M=Ga, In) cations. The M(I)-P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2-TZVPP, MP2/def2-TZVPP, and SCS-MP2/def2-TZVPP levels.  相似文献   

18.
Lanthanide complexes are of increasing importance in cancer diagnosis and therapy. In the present study 1:1 and 1:3 solid complexes of La (III)–5-FU (5-fluorouracil) were prepared and characterized. In solution, the formation of 1:1 La (III) and Eu (III) complexes enabled the enhancement of 5-FU's effectiveness. Binding constants of the 1:1 complexes of both metals were estimated using spectrophotometry and HPLC with fluorescence detection methods. The thermodynamic parameters ΔG ° , ΔH ° and ΔS ° were calculated using differential scanning calorimetry. Evaluation of the cytotoxic activity of the 1:1 La (III)- and Eu (III)–5-FU complexes was performed through two methodologies, trypan blue for cell viability where La (III)- and Eu (III)–5-FU complexes were found to have 52,000 and 80,000 dead cells, respectively, and via flow cytometric analysis to measure the apoptotic values, which were found to be 59.87 and 86.86% respectively.  相似文献   

19.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

20.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号