首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of direct electron transfer between enzymes and electrodes is frequently hampered by the small fraction of adsorbed proteins that remains electrochemically active. Here, we outline a strategy to overcome this limitation, which is based on a hierarchical analysis of steady-state electrocatalytic currents and the adoption of the "binary activity" hypothesis. The procedure is illustrated by studying the electrocatalytic response of horseradish peroxidase (HRP) adsorbed on graphite electrodes as a function of substrate (hydrogen peroxide) concentration, electrode potential, and solution pH. Individual contributions of the rates of substrate/enzyme reaction and of the electrode/enzyme electron exchange to the observed catalytic currents were disentangled by taking advantage of their distinct dependence on substrate concentration and electrode potential. In the absence of nonturnover currents, adoption of the "binary activity" hypothesis provided values of the standard electron-transfer rate constant for reduction of HRP Compound II that are similar to those reported previously for reduction of cytochrome c peroxidase Compound II. The variation of the catalytic currents with applied potential was analyzed in terms of the non-adiabatic Marcus-DOS electron transfer theory. The availability of a broad potential window, where catalytic currents could be recorded, facilitates an accurate determination of both the reorganization energy and the maximum electron-transfer rate for HRP Compound II reduction. The variation of these two kinetic parameters with solution pH provides some indication of the nature and location of the acid/base groups that control the electronic exchange between enzyme and electrode.  相似文献   

2.
The paper presents the first results on recombinant horseradish peroxidase (HRP) electrochemistry obtained on graphite with a rotating disk electrode system. Recombinant HRP demonstrates a higher percentage of properly oriented molecules than the native enzyme. The first important conclusion based on the recombinant HRP electrochemistry is that glycosylation hinders direct electron transfer (ET). The single-point mutants with limited activity toward phenolic substrates, viz. Asn70Val and Asn70Asp showed no changes in the registered current upon the addition of p-cresol, catechol, p-aminophenol and guaiacol and, thus, in this particular case mediated ET was not more advantageous than direct ET. The rate constants for direct ET were comparable for all mutants tested in this study demonstrating that direct ET does not depend on the enzyme's ability or inability to oxidise phenolic substrates. The results obtained in this study demonstrate the true mediatorless nature of enzyme-catalysed direct ET.  相似文献   

3.
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode. Moreover, the electrochemical results showed that HRP retained its bioactivity and bioelectrocatalytical activity, and also showed good direct electron transfer behavior on such a composite film.  相似文献   

4.
Electrochemical properties of redox-active self-assembled molecular films of novel metallo-octacarboxyphthalocyanine (MOCPc, M = Fe, Co and Mn) complexes integrated with cysteamine (Cys) monolayer on gold electrodes via amide bonds were investigated. X-Ray photoelectron spectroscopy confirmed the appearance of the various elements in their expected chemical environment upon immobilization of these species. The heterogeneous electron transfer properties of the Au-Cys-MOCPc molecular films using an outer-sphere ([Fe(CN)(6)](4-)/[Fe(CN)(6)](3-)) redox probe were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electron transfer rate constant (k(app)) depends markedly on the central metal of the metallophthalocyanine cores (k(app): Co > Mn > Fe). A strong pH dependence of the electron transport of the Au-Cys-MOCPc molecular films was found. The surface pK(a) values of the MOCPc complexes were essentially the same (ca. 7.5). The differences in the electron transports and ionization constants are discussed. The electrodes are sensitive to the electrooxidation of epinephrine in physiological pH conditions, peak potential (E(p)/V vs. Ag|AgCl, saturated KCl) decreasing as FeOCPc (0.20 V) < MnOCPc (0.26 V) < CoOCPc (0.34 V).  相似文献   

5.
The effect of pH on the kinetics of the bioelectrocatalytic reduction of H(2)O(2) catalysed by horseradish peroxidase (HRP) has been studied at -50 mV vs. Agmid R:AgCl on HRP-modified Au electrodes placed in a wall-jet flow-through electrochemical cell. Native HRP (nHRP) and a nonglycosylated recombinant form containing a six-histidine tag at the C-terminus, C(His)rHRP, produced by genetic engineering of nonglycosylated recombinant HRP using an E. coli expression system, have been used for adsorptive modification of Au electrodes. A favourable adsorption of C(His)rHRP on pre-oxidized Au from a protein solution at pH 6.0 provided a high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct (mediator-less) electron transfer (ET) between Au and the active site of HRP. The heterogeneous ET rate constant, k(s), calculated from experimental data on direct ET, on mediated ET in the presence of catechol as well as from microbalance data, increased more than 30 times when changing from nHRP to C(His)rHRP. For both forms of HRP, the increasing efficiency of bioelectrocatalysis with increasing [H(3)O(+)] was observed. The values of the apparent k(s) between C(His)rHRP and Au changed from a value of 12+/-2 s(-1) in PBS at pH 8.0 to a value of 434+/-62 s(-1) at pH 6.0; a similar k(s)-pH dependence was also observed for nHRP, providing the possibility to consider the reaction mechanism involving the participation of a proton in the rate-determining step of the charge transfer.  相似文献   

6.
Robust molecular bioelectronic devices require a programmable and efficient electronic communication between biological molecules and electrodes. With proteins it is often compromised by their uncontrollable assembly on electrodes that does not provide neither uniform nor efficient electron flow between proteins and electrodes. Here, horseradish peroxidase reconstituted onto C11-alkanethiol-conjugated hemin and self-assembled onto the gold nanoparticle (NP)-modified electrodes via the exposed alkanethiol tail exhibits enhanced electron transfer (ET), proceeding via the gold NP relay with the ET rate constant approaching 115 s 1 vs. 14 s 1 shown on bare gold, by this offering an advanced controllable design of interfaces for bioelectronic devices based on heme-containing enzymes with a non-covalently bound heme.  相似文献   

7.
The effect of proton donors (PD) on the direct electron transfer (ET) reaction between polycrystalline Au electrodes and horseradish peroxidase (HRP) was investigated. HRP was immobilised directly on the bare Au surface. The pH of the contacting solution was varied at a constant ionic strength and the following different PDs were used as additives: H3O+, NH4+, [La(H2O)]3+, [Y(H2O)]3+, [Lu(H2O)]3+. The kinetics of the bioelectrocatalytic reduction of H2O2 catalysed by HRP was studied with linear sweep voltammetry (LSV) in the potential range from 700 to −100 mV vs. SCE as well as amperometrically at −50 mV vs. Ag|AgCl with the HRP-modified Au electrodes placed in a wall-jet flow through electrochemical cell. An increase of [H3O+] results in an enhancement of the current of the bioelectroreduction of H2O2 due to a more facilitated direct ET between Au and the enzyme over the potential range involved. It is shown that at high overvoltages (E<0.4 V) the PDs do not affect the rate of the enzymatic reduction of H2O2 but rather increase significantly the rate of direct ET between Au and HRP and the efficiency of acting as a PD is strongly correlated with their PD properties. The dependence of the apparent heterogeneous rate constant of direct ET, ks, on [H3O+] makes it possible to suggest that the reaction mechanism involves the participation of a proton in the elementary step of the charge transfer.  相似文献   

8.
Direct electron transfer (DET) reactions of recombinant tobacco peroxidase (rTOP), namely direct electroreduction of Compound I/Compound II and heme Fe3+/2+ conversion, were studied on gold electrodes. rTOP of wild type, non-glycosylated, was produced using an Escherichia coli expression system. At pH 5.0, the redox potential for direct electrochemical transformation of the Fe3+/2+ of the peroxidase heme was −143 mV vs. AgAgCl, and 0.26 ± 0.07 pmol of the adsorbed rTOP were in DET contact with the gold electrode. The total amount of the adsorbed rTOP estimated from QCM data was 53 ± 5 pmol/cm2 or 1.67 pmol when referred to the surface area of the electrodes used for electrochemical measurements. Of 1.67 pmol of adsorbed rTOP, only 0.76 pmol were catalytically active. DET between Au and the enzyme was also studied in the reaction of the bioelectrocatalytic reduction of H2O2 by cyclic voltammetry and amperometric detection of H2O2 at +50 mV with rTOP-modified Au electrodes placed in a wall-jet flow-through electrochemical cell. Maximal bioelectrocatalytic current response of the rTOP-modified gold electrodes to H2O2 was observed at pH 5.0 and stemmed from its bioelectrocatalytic reduction based on DET between Au and the active site of rTOP. Kinetic analysis of the DET reactions gave 52% of the adsorbed rTOP molecules active in DET reactions (0.4 pmol of adsorbed catalytically active rTOP, correspondingly), which correlated well with the non-catalytic-voltammetry data. DET was characterised by a heterogeneous ET rate constant of 13.2 s−1, if one takes into account the QCM data, and 19.6 s−1, if the amount of rTOP estimated from the data on DET transformation of Fe3+/2+ couple of rTOP is considered. The sensitivity for H2O2 obtained for the rTOP-modified Au electrodes was 0.7 ± 0.1 A M−1 cm−2. These are the first ever-reported data on DET reactions of anionic plant peroxidases on bare gold electrodes.  相似文献   

9.
Computational modeling offers a new insight about the electron transfer pathway in heme peroxidases. Available crystal structures have revealed an intriguing arrangement of the heme propionate side chains in heme-heme and heme-substrate complexes. By means of mixed quantum mechanical/molecular mechanics calculations, we study the involvement of these propionate groups into the substrate oxidation in ascorbate peroxidase and into the heme to heme electron transfer in bacterial cytochrome c peroxidase. By selectively turning on/off different quantum regions, we obtain the electron transfer pathway which directly involves the porphyrin ring and the heme propionates. Furthermore, in ascorbate peroxidase the presence of the substrate appears to be crucial for the activation of the electron transfer channel. The results might represent a general motif for electron transfer from/to the heme group and change our view for the propionate side chains as simple electrostatic binding anchors. We name the new mechanism "the propionate e-pathway".  相似文献   

10.
We consider electron injection into the conduction band of a semiconductor, from an electronically excited state of a dye molecule, adsorbed on its surface. For arbitrary width of the conduction band, the survival probability of the excited state can be calculated using a Green's-function approach. We show that the existence of a split-off state can play an important role in the total injection probability. In the wide band limit, the survival probability decays exponentially, but for finite band widths it does not. We further investigate the effect of vibrations on the process. A Green's operator technique may be used to solve this too exactly. We show that the problem may be reduced to a non-Hermitian eigenvalue problem for the vibrational states alone. Exact results can be obtained for arbitrary bandwidth and for a few vibrational degrees of freedom. In the wide band limit, the dynamics is particularly simple and we find that (1) the survival probability of the excited state is unchanged by the inclusion of vibrational motion, but (2) each vibrational state now has a finite lifetime. Numerical results are presented for the effects of reorganization energy, energy of the injecting level, and the variation of the matrix element for the electron injection, on the survival probability of the electron in the excited state. As an illustration of the approach, we also present results of numerical calculation of the absorption spectrum of perylene adsorbed on TiO(2) and compare it with experimental results.  相似文献   

11.
Direct electron transfer and stable adsorption of hemoglobin (Hb) on a carbon paste (CP) electrode were achieved with the aid of a single-chain cationic surfactant, namely, cetyltrimethylammonium bromide (CTAB). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that CTAB could form a complete monolayer with a high density of positive charges on the surface of the CP electrode, which strongly adsorbed negatively charged protein molecules via electrostatic interactions. The surfactant molecules anchored the protein molecules to align in suitable orientations and acted as electron-tunneling pathways between the protein molecules and the CP electrode. The bioelectrocatalytic activity of the immobilized Hb was confirmed by RAIR and UV-vis spectroscopies, and rapid electrochemical responses to the reduction of oxygen (O2), hydrogen peroxide (H2O2), and nitrite (NO2-) were also obtained.  相似文献   

12.
The scanning electrochemical microscope (SECM) combined with a computerized tensile stage was employed to measure the kinetics of electron transfer (ET) reactions at stainless steel electrodes as a function of the applied mechanical stress. Reproducible current versus distance curves were obtained for different values of the tensile stress applied to a stainless steel (T-316) sample by using hexaammineruthenium as a redox mediator. The dependences of the extracted rate constant on substrate potential (i.e., Tafel plots, ln k versus E) were linear, in agreement with classical electrochemical theory. Possible origins of the stress effect on the ET rate and its implications for studies of stress corrosion cracking are discussed.  相似文献   

13.
The effects of supporting electrolyte on the kinetics of the elementary step of electron transfer are considered as unavoidable interplay of interfacial phenomena and ionic equilibria in solution. For the former, the problems to separate contributions of electrostatic electrode-reactant interactions and specific adsorption are addressed, and various aspects of the traditional Frumkin correction (“psi-prime effect”) are discussed. The construction of corrected Tafel plots is shown to be a procedure containing the internal contradiction resulting in an uncertainty. This uncertainty can be eliminated by combining the principles of traditional analysis of the “double layer” effects with physical theory instead of phenomenological approaches. Specific manifestations of parallel electron transfer to an ensemble of reacting species are presented in the context of “mean reactant charge in solution bulk.” The approach to account for non-spherical shape and inhomogeneous charge distribution in reacting species is considered in terms of “molecular psi-prime effect.” Finally, some comments are given on analogy of “double layer” effects at metal/solution interface and interfacial phenomena specific for more complex and highly relevant electrochemical systems.  相似文献   

14.
The accessibility of the electroactive periphery was studied and compared for dendrimers and linear analogs by heterogeneous electron transfer using microelectrodes.  相似文献   

15.
The behavior at low-dose exposure (0.033–0.4 kGy) of horseradish peroxidase (HRP) and of two different purified fractions of apple (Jonathan cultivar) peroxidases (named APR1S and APR2S) was studied. The HRP solutions were added with either 0.32 M fructose or glucose in order to study their effect on enzymes activity response under γ (137Cs, dose rate 0.4 kGy/h) irradiation. The obtained results showed similar behavior between HRP-sugar-added solution and apple fraction with higher oligosaccharides content (APR2S) undergoing low-dose treatment. The same pattern was observed between unglycosylated HRP and APR1S with lower oligosaccharides content. These similarities gave us the possibility to conclude that the presence of oligosaccharides, in more or less quantities, influences in the same way the peroxidases activity, from different plant species, exposed to γ irradiation.  相似文献   

16.
An anthraquinone-Au140 gold nanoparticle hybrid system has been synthesised and its electron transfer properties investigated. The incorporation of nanoparticles as part of a molecular linker resulted in fast electron transfer through an otherwise blocking film.  相似文献   

17.
Engineered metalloproteins and enzymes can be self assembled on pristine gold electrodes in robust, electrochemically-addressable, arrays.  相似文献   

18.
We report results of MC simulations of electron transfer across a metal electrode/electrolyte solution interface. The model presumes the Landau–Zener theory and a random walk on a two-dimensional lattice formed by crossing parabolic reaction free energy surfaces along the solvent coordinate. Emphasis is put on investigating the activationless discharge regime; the bridge-assisted electron transfer is also partially addressed. We have calculated effective electronic transmission coefficient as a function of the electrode overpotential and temperature in a wide range of orbital overlap. The dependence of the transmission coefficient on the electronic density of states is analyzed as well.  相似文献   

19.
The direct electron transfer of glucose oxidase (GOD) was achieved based on the immobilization of GOD/colloidal gold nanoparticles on a glassy carbon electrode by a Nafion film. The immobilized GOD displayed a pair of well-defined and nearly reversible redox peaks with a formal potential (Eo ') of -0.434 V in 0.1 M pH 7.0 phosphate buffer solution and the response showed a surface-controlled electrode process. The dependence of Eo ' on solution pH indicated that the direct electron transfer reaction of GOD was a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOD retained its electrocatalytic activity for the oxidation of glucose. So the resulting modified electrode can be used as a biosensor for detecting glucose.  相似文献   

20.
A method is introduced for simple calculation of charge transfer between very large solvated organic dimers (fullerenes here) from isolated dimer calculations. The individual monomers in noncentrosymmetric dimers experience different chemical environments, so that the dimers do not necessarily represent bulk‐like molecules. Therefore, we apply a delocalizing bias directly to the Fock matrix of the dimer system, and verify that this is almost as accurate as self‐consistent solvation. As large molecules like fullerenes have a plethora of excited states, the initially excited state orbitals are thermally populated, so that the rate is obtained as a thermal average over Marcus thermal transfers. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号