首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing a tetradentate N3S(thioether) ligand, LN3S, dioxygen reactivity of a copper(I) complex, [(LN3S)CuI]+ (1) was examined. In CH2Cl2, acetone (at -80 degrees C), or 2-methyltetrahydrofuran (at -128 degrees C), 1 reacts with O2 producing the end-on bound peroxodicopper(II) complex [{(LN3S)CuII}2(mu-1,2-O2(2-))]2+ (2), the first reported copper-dioxygen adduct with sulfur (thioether) ligation. Its absorption spectrum contains an additional low-energy feature (but not a Cu-S CT band) compared to the previously well-characterized N4 ligand complex, [{(TMPA)CuII}2(mu-1,2-O2(2-))]2+ (3) (TMPA = tris(2-pyridylmethyl)amine). Resonance Raman spectroscopy confirms the peroxo formulation {nu(O-O) = 817 cm-1 (16-18O2 Delta = 46 cm-1) and nu(Cu-O) = 545 cm-1 (16-18O2 Delta = 26 cm-1), in close analogy to that known for 3 {nu(O-O) = 827 cm-1 and nu(Cu-O) = 561 cm-1}. Direct evidence for thioether ligation comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 A}.  相似文献   

2.
The structure of reversibly oxidizable [Cu(mmb)2](BF4) with 1-methyl-2-(methylthiomethyl)-1H-benzimidazole (mmb) as bidentate N,S-donor ligand has been determined and compared with that of the copper(II) species [Cu(mmb)2(eta 1-ClO4)](ClO4). In the complex ions of the equilibrium [CuI(mmb)2](+) + ClO4- reversible e- + [CuII(mmb)2-(eta 1-ClO4)]+ the almost linear N-Cu-N backbone is invariant whereas the bonds to the thioether sulfur centers and especially the changing S-Cu-S angle (145.18(5) degrees for the CuII species, 109.33(3) degrees for the CuI form) reflect the metal oxidation state. In contrast to the perchlorate coordinating copper(II) species, [CuI(mmb)2](BF4) contains a cation with a very large vacant site at the metal center, resulting in elliptical channels within the crystal. DFT calculations on [CuI(mb)2]+, [CuII(mb)2]2+, and [CuII(mb)2(OClO3)]+ with mb = 2-methylthiomethyl-1H-benzimidazole confirm the essential role of the metal-sulfur bonds in responding to the reversible CuI/II electron transfer process, even in the absence of electronically stronger interacting thiolate sulfur centers or sophisticated oligodentate ligands.  相似文献   

3.
The synthesis, reactivities, spectroscopic, electrochemical, and structural studies of copper(I), copper(II), nickel(II), and cobalt(II) complexes of 6,6'-bis(bromomethyl)-2,2'-bipyridine (bpy-Br2) and 6,6'-bis(chloromethyl)-2,2'-bipyridine (bpy-Cl2) have been reported. The copper(I) complex [CuI(bpy-Br2)2](ClO4) (1) has been obtained in two crystallographic modifications, in which the coordination geometry of the metal center has the D2d symmetry. The reaction between CuCl2.2H2O and bpy-Br2 has been followed spectrophotometrically at 45 degrees C over a period of 7 h, and a mechanism for the intramolecular halogen exchange and scrambling in the initially formed compound [CuII(bpy-Br2)Cl2] (5) has been proposed. Depending upon the reaction conditions, several halogen-exchanged products, namely [CuII(bpy-Br1.86Cl0.14)(Cl1.89Br0.11)] (2), [CuII(bpy-Br1.81Cl0.19)(Cl1.70Br0.30)(H2O)] (3), and [CuII(bpy-Br0.63Cl1.37)(Cl0.54Br1.46)] (4), have been isolated in crystalline form. The reaction between bpy-Cl2 and CuCl2.2H2O provides [CuII(bpy-Cl2)Cl2] (7) and [CuII(bpy-Cl2)Cl2(H2O)] (8), whereas CoCl2.6H2O and NiCl2.6H20 on reaction with bpy-Br2 under boiling condition produce [CoII(bpy-Br0.5Cl1.5)(ClBr)] (11) and [NiII(bpy-Br0.46Cl1.54)(Cl0.73Br1.27)(H2O)] (12), respectively. The X-ray structures determined for the 4-coordinate compounds 2, 4, and 7 show flattened tetrahedral geometry for the metal center with the D2 symmetry. Both 5-coordinate compounds 3 and 12 have square pyramidal geometry, and whereas the nickel(II) complex 12 has near-perfect geometry (tau = 0.015), considerable distortion is observed for the copper(II) complex 3 (tau = 0.25). Complexes [CuII(bpy-Cl2)Br2] (6) and [CuII(bpy-Br2)Br2] under boiling condition undergo photoreduction to produce the dimeric copper(I) complexes [{CuI(bpy-Cl1.30Br0.70)(mu-Br)}2](9) and [{CuI(bpy-Br2)(mu-Br)}2] (10), respectively. The fact that the photoreduction of [CuII(bpy-Cl2)Br2] (6) and [CuII(bpy-Br2)Br2] do not take place in absence of light has been established by spectrophotometric measurements. The crystal structures of 9 and 10 have been determined. The electrochemical behavior of all the copper complexes 1-10 has been studied in acetonitrile and dichloromethane. The E1/2 values for the CuI/CuII redox couples show strong solvent dependence and for a given system the E1/2 value is more positive in dichloromethane relative to that in acetonitrile. For the compounds [CuII(bpy-Br2-xClx)(Cl2-yBry)] (x = 0-2, y = 0-2), the E1/2 values become more positive with the increase of y value.  相似文献   

4.
Catalytic reduction of O2 to H2O, and coupling to membrane proton translocation, occurs at the heterobinuclear heme a3-CuB active site of cytochrome c oxidase. One of the CuB ligated histidines is cross-linked to a neighboring tyrosine (C-N bond; tyrosine C6 and histidine epsilon-nitrogen), and the protic residue of this cross-linked His-Tyr moiety is proposed to participate as both an electron and a proton donor in the catalytic dioxygen reduction event. To provide insight into the chemistry of such a moiety, we have synthesized and characterized tetra- and tridentate pyridylalkylamine chelate ligands {LN4OR and LN3OR (R = H or Me)}, which include an imidazole-phenol (or anisole) cross-link and their copper(I/II) complexes. [CuI(LN4OH)]B(C6F5)4 (1) reacts with dioxygen at -80 degrees C in THF, forming an unstable trans-mu-1,2-peroxodicopper(II)complex, which subsequently converts to a dimeric copper(II)-phenolate complex [{Cu(LN4O-)}2](B(C6F5)4)2 (5a). The close analogue [CuI(LN4OMe)]B(C6F5)4 (3) binds dioxygen reversibly at -80 degrees C in tetrahydrofuran. Stopped-flow kinetics of the reaction [CuI(LN3OH)]ClO4 (2) with O2 in CH2Cl2 indicate a steady formation of the purple dimeric product [{Cu(LN3O-)}2](ClO4)2 (5b), which has been analyzed in the temperature range from -40 to +20 degrees C, DeltaH = -9.6 (6) kJ mol-1, DeltaS = -168 (2) J mol-1 K-1 (k(-40 degrees C) = 1.05(4) x 106 and k(+20 degrees C) = 4.6(2) x 105 M-2 s-1). The X-ray crystal structures of 1, [CuII(LN3OH)(MeOH)(OClO3-)](ClO4) (4), 5a, and 5b are reported.  相似文献   

5.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   

6.
In the further development and understanding of heme-copper O2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) approximately 20 min; lambda max = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {nu(O-O) = 808 cm-1; Delta16O2/18O2 = 46 cm-1; Delta16O2/16/18O2 = 23 cm-1}. Consistent with a mu-eta2:eta1 bridging peroxide ligand, two metal-O stretching frequencies are observed {nu(Fe-O) = 533 cm-1, nu(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also muB = 5.1 +/- 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized mu-oxo complex [(F8TPP)FeIII-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). M?ssbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; delta = 0.57 mm/s, |DeltaEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and M?ssbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2-) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of mu-peroxo complex 3 yields mu-oxo complex 4 with concomitant release of approximately 0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 --> 2 --> 3 --> 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.  相似文献   

7.
The oxygenation of the potassium salt of flavonol (flaH) in absolute DMF leads to potassium O-benzoylsalicylate and carbon monoxide in 95% yield at 40 degrees C. Kinetic measurements resulted in the rate law -d[flaK]/dt = k(2)[flaK][O(2)]. The rate constant, activation enthalpy, and entropy at 313.16 K are as follows: k(2)/M(-)(1) s(-1) = (3.28 +/- 0.10) x 10(-1), DeltaH()/kJ mol(-1) = 29 +/- 2, DeltaS/J mol(-1) K(-1) = -161 +/- 6. The reaction fits a Hammett linear free energy relationship for 4'-substituted flavonols, and electron-releasing groups make the oxygenation reaction faster. The anodic oxidation wave potentials E(a) of the 4'-substituted flavonolates correlate well with reaction rates. At more negative E(a) values faster reaction rates were observed. EPR spectrum of the reaction mixture (g = 2.0038, dH = 1.8 G, a(H) = 0.9 G) showed the presence of flavonoxyl radical as a result of a SET from the flavonolate to dioxygen.  相似文献   

8.
To model thioether-copper coordination chemistry including oxidative reactivity, such as occurs in the copper monooxygenases peptidylglycine -hydroxylating monooxygenase (PHM) and dopamine beta-hydroxylase (DbetaH), we have synthesized new tridentate N2S ligands LSEP and LSBz [LSEP = methyl(2-phenethylsulfanylpropyl)(2-pyridin-2-ylethyl)amine; LSBz = (2-benzylsulfanylpropyl)methyl(2-pyridin-2-ylethyl)amine)]. Both copper(I) and copper(II) complexes have been prepared, and their respective O2 and H2O2 chemistry has been studied. Under mild conditions, oxygenation of [(LSEP)CuI]+ (1a) and [(LSBz)CuI]+ (2a) leads to ligand sulfoxidation, thus exhibiting copper monooxygenase activity. A copper(II) complex of this sulfoxide ligand product, [(LSOEP)CuII(CH3OH)(OClO3)2], has been structurally characterized, demonstrating Cu-Osulfoxide ligation. The X-ray structure of [(LSEP)CuII(H2O)(OClO3)]+ (1b) and its solution UV-visible spectral properties [S-CuII LMCT band at 365 nm (MeCN solvent); epsilon = 4285 M-1 cm-1] indicate the thioether sulfur atom is bound to the cupric ion in both the solid (CuII-S distance: 2.31 A) and solution states. Reaction of 1b with H2O2 leads to sulfonation via the sulfoxide; excess hydrogen peroxide gives mostly sulfone product. These results may provide some insight into recent reports concerning protein methionine oxidation, showing the potential importance of copper-mediated oxidation processes in certain biological settings.  相似文献   

9.
A novel two-dimensional cyanide-bridged polymer [CuII(tren)]{CuI[W(V)(CN)8]} . 1.5H2O (tren = tris(2-aminoethyl)amine) formed via the simultaneous in situ metal-ligand redox reaction of [Cu(tren)(OH2)]2+ and self-assembly with [W(V)(CN)8]3- consists of a {CuI[W(V)(CN)8]} square grid built of CuI centres of tetrahedral geometry coordinatively saturated by CN bridges and [W(V)(CN)8]3- capped by [CuII(tren)]2+ moieties; it exhibits ferromagnetic coupling J1 = +5.8(1) cm(-1) within the CuII-W(V) dinuclear subunits and weak antiferromagnetic coupling J2 = -0.03(1) cm(-1) between them through diamagnetic CuI spacers.  相似文献   

10.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

11.
Prion diseases are caused by the misfolding and aggregation of the prion protein (PrP). Herein we provide evidence that the CuII adduct of the unstructured amyloidogenic fragment of the human PrP (PrP(91-126)) is redox active under physiological conditions. We have identified that the relevant high-affinity CuII binding region of PrP(91-126) is contained between residues 106 and 114. Both [CuII(PrP(91-126))] and [CuII(PrP(106-114))] have CuII Kd values of approximately 90 microM. Furthermore, the smaller PrP fragment PrP(106-114) coordinates CuII producing an electronic absorption spectrum nearly identical with [CuII(PrP(91-126))] (lambda max approximately 610 nm (epsilon approximately 125 M-1 cm-1)) suggesting a similar coordination environment for CuII. Cu K-edge X-ray absorption spectroscopy (XAS) reveals a nearly identical CuN(N/O)2S coordination environment for these two metallopeptides (2N/O at approximately 1.97 A; 1S at approximately 2.30 A; 1 imidazole N at approximately 1.95 A). Both display quasireversible CuII/CuI redox couples at approximately -350 mV vs Ag/AgCl. ESI-MS indicates that both peptides will coordinate CuI. However, XAS indicates differential coordination environments between [CuI(PrP(91-126))] and [CuI(PrP(106-114))]. These data indicate that [CuI(PrP(91-126))] contains Cu in a four coordinate (N/O)2S2 environment with similar (N/O)-Cu bond distances (Cu-(N/O) r = 2.048(4) A), while [CuI(PrP(106-114))] contains Cu in a four coordinate (N/O)2S2 environment with differential (N/O)-Cu bond distances (Cu-(N/O) r1 = 2.057(6) A; r2 = 2.159(3) A). Despite the differential coordination environments both Cu-metallopeptides will catalytically reduce O2 to O2*- at comparable rates.  相似文献   

12.
Hydrothermal (deuteratothermal) reaction of L-ethyl lactate (Lig-Et) with Eu(ClO(4))(3)6 H(2)O gives colorless block crystals of [Eu(Lig)(2)(X(2)O)(2)][ClO(4)] (1, X=H; 2, X=D) both of which possess a two-dimensional laminar homochiral framework. Single-crystal dielectric measurements reveal that 1 and 2 display a giant dielectric anisotropy approximately exceeding 100 and large isotopic effect with about 54 % enhancement along the a axis. Their ferroelectric features further confirm this respect. Crystal parameters: 1, C(6)H(14)ClO(12)Eu, M(r)=465.58, monoclinic, C(2), a=8.6786(6), b=8.3965(6), c=10.2153(7) A, beta=92.040(1) degrees , V=743.92(9) A(3), Z=2, rho(calcd)=2.079 Mg m(-3), R(1)=0.0508, wR(2)=0.1239, mu=4.448 mm(-1), S=1.043; Flack=0.04(5). 2: C(6)H(10)D(4)ClO(12)Eu, M(r)=469.61, monoclinic, C(2), a=8.689(2), b=8.410(2), c=10.224(3) A, beta=92.057(4) degrees , V=746.7(3) A(3), Z=2, rho(calcd)=2.089 Mg m(-3), R(1)=0.0465, wR(2)=0.1150, mu=4.432 mm(-1), S=1.058; Flack=0.02(5).  相似文献   

13.
Metal complexes of general formula [Cu(L)](ClO4)2, [Ru(L)(PPh3)2]Cl2 and [Ru(L)(PPh3)Cl]Cl2[L = 1,4-di- (o-benzylidiminophenoxy/benzylidiminophenylthio)butane] containing N2O2 or N2S2 donor atoms have been prepared and characterised by spectral, magnetic and cyclic voltammetric studies. The rhombic nature of the e.s.r. spectra of the RuIII complexes indicates an asymmetry in the electronic environment around the Ru atom. e.s.r. spectra of the CuII complexes show a typical four-line spectrum with approximate tetrahedral distortion. The observed low A values in the CuII complexes, of the order of 132–160 × 10–4cm–1, indicates a tetrahedrally distorted square planar structure.The influence of modified ligands is reflected in the metal-centered redox potentials. CuII complexes having the N2S2 chromophore, in MeCN on a glassy carbon electrode, undergo quasi-reversible reduction in the 540–680 mV range. A depression in E1/2 values for the open chain N2S2 chromophoric macrocyclic CuII complexes, compared to electronically similar cyclic tetradentate CuII analogues, is due to the increased stabilization of the CuI state by added flexibility provided through the open chain donor sites.  相似文献   

14.
Two neptunyl(VI) iodates, NpO(2)(IO(3))(2)(H(2)O) (1) and NpO(2)(IO(3))(2).H(2)O (2), have been prepared from the aqueous reactions of Np(V) in HCl with KIO(4) or H(5)IO(6) at 180 degrees C and have been characterized by single crystal X-ray diffraction and Raman spectroscopy. Both compounds consist of two-dimensional arrangements of pentagonal bipyramidal [NpO(7)] polyhedra with axial neptunyl, NpO(2)(2+), dioxocations. In 1, the neptunium centers are bound in the equatorial plane by four bridging iodate anions and one terminal water molecule. The iodate anions link the [NpO(7)] units into corrugated sheets that interact with one another through intermolecular IO(3)(-)...IO(3)(-) interactions as also observed in UO(2)(IO(3))(2)(H(2)O). Compound 2 is isostructural with the recently reported PuO(2)(IO(3))(2).H(2)O, where oxygen atoms from bridging iodate anions occupy the five equatorial sites around the neptunyl moieties. The iodate anions occur as both mu(2)- and mu(3)-units and link the neptunyl polyhedra into sheets. Both types of iodate anions have their stereochemically active lone-pair of electrons aligned on one side of each layer creating a polar structure. Raman spectra of 1, UO(2)(IO(3))(2)(H(2)O), and PuO(2)(IO(3))(2).H(2)O show a sequential shift of the nu(1)(AnO(2)(2+)) stretch to lower wavenumber as the atomic number of the actinide is increased. Crystallographic data: 1, orthorhombic, space group Pcan, a = 7.684(2) A, b = 8.450(2) A, c = 12.493(3) A, Z = 4; 2, orthorhombic, space group Pna2(1), a = 7.314(1) A, b = 11.631(2) A, c = 9.449(2) A, Z = 4.  相似文献   

15.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

16.
基于柔性吡啶基配体和钒酸盐,合成得到了一个非中心对称的杂化化合物[CuⅠ4(bpp)4(VⅤ6O17)](1)(bpp=1,3-二(4-吡啶基)丙烷),并通过元素分析、红外光谱、X-射线单晶衍射、热重分析等测试对其进行了表征。晶体数据表明该化合物属于正交晶系,Pca21空间群。在化合物1中,一维链状的多钒酸根与[CuⅠ(bpp)]单元通过Cu-O键连接形成沿ab平面的层,这些层进一步通过Cu髣…Cu髣弱相互作用(Cu髣…Cu髣距离为0.281nm)连接成一个三维的框架结构。  相似文献   

17.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   

18.
The reactions of Na+ R[O]CS- (R = Me, Ph) with mixtures of CuCl and PPh3 in stoichiometric ratios yielded the compounds [Cu4(SC[O]Me)4(PPh3)4] (1), [Cu4(SC[O]Ph)4(PPh3)3] (2), [Cu2(SC[O]Me)2(PPh3)4] (3), [Cu(SC[O]Ph)(PPh3)2] (4), and [Cu2(SC[O]Ph)2(PPh3)3] (5) quantitatively. Compound 2 was also obtained from mixtures of CuCl, PPh3, and NaSC[O]Ph in the ratio 1:1:1. The analogous thioacetate compound similar to 2 and the thiobenzoate analogue of 1 could not be obtained. Attempts to prepare the unsymmetrical dimer of a thioacetate compound similar to 5 gave a mixture of 1 and 3. The structures of 1-4 have been determined by single-crystal X-ray diffraction methods. Crystal data for 1: triclinic space group Pl, a = 11.5844(3) A, b = 13.2459(3) A, c = 14.3433(3) A, alpha = 64.019(1) degrees, beta = 79.297(1) degrees, gamma = 69.426(1) degrees, V = 1850.98(7) A3, Z = 1, Dcalcd = 1.439 g.cm-3. Crystal data for 2.0.5CH2Cl2.H2O: triclinic space group P1, a = 12.4413(1) A, b = 15.5443(1) A, c = 20.4637(3) A, alpha = 94.974(1) degrees, beta = 95.976(1) degrees, gamma = 100.450(1) degrees, V = 3848.09(7) A3, Z = 2, Dcalcd = 1.416 g.cm-3. Single-crystal data for 3: monoclinic space group P2(1)/n, a = 15.2746(2) A, b = 23.2947(2) A, c = 19.0518(3) A, beta = 96.713(1) degrees, V = 6732.5(2) A3, Z = 4, Dcalcd = 1.309 g.cm-3. Crystal data for 4: triclinic space group P1, a = 10.2524(3) A, b = 12.9826(4) A, c = 14.5340(4) A, alpha = 87.723(1) degrees, beta = 75.322(1) degrees, gamma = 75.978(1) degrees, V = 1815.14(9) A3, Z = 2, Dcalcd = 1.327 g.cm-3. Compound 1, [mu 3-SC[O]Me-S)2(mu-SC[O]Me-S)2(CuPPh3)4], is a tetramer with a distorted stepladder structure in which two copper atoms are trigonally coordinated and the other two are tetrahedrally coordinated. Two bonding modes, namely, mu 3-S and mu 2-S, were observed for the Me[O]CS- anion. The structure of 2 may be described as a highly distorted cubanoid structure and formulated as [(mu 3-SC[O]Ph-S3)(mu 3-SC[O]Ph-S2,O)3(Cu)(CuPPh3)3]. In 2, three copper atoms have tetrahedral coordination geometry and one copper atom is trigonally coordinated. Unprecedented bonding modes, namely, mu 3-S, have been observed for the R[O]CS- anions, in 1 and 2 and mu 3-S2,O in 2. Compound 3, [(mu-SC[O]MeS)(mu-SC[O]Me-S,O)[Cu(PPh3)2]2] is a dimer with mu 2-S and mu 2-S,O bonding modes of Me[O]CS- ligands. Monomeric structure was found in 4 in which the copper atom has trigonal planar geometry with a very weak intramolecular interaction with O. Variable temperature 31P NMR studies in solution show the presence of various species in equilibria.  相似文献   

19.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

20.
The synthesis of syn,anti-[Co(cyclen)en](ClO4)3 (1(ClO4)3) and syn,anti-[Co(cyclen)tn](ClO4)3 (2(ClO4)3) is reported, as are single-crystal X-ray structures for syn,anti-[Co(cyclen)(NH3)2](ClO4)3 (3(ClO4)3). 3(ClO4)3: orthorhombic, Pnma, a = 17.805(4) A, b = 12.123(3) A, c = 9.493(2) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.030. 1(ClO4)3: monoclinic, P2(1)/n, a = 8.892(2) A, b = 15.285(3) A, c = 15.466(3) A, alpha = 90 degrees, beta = 91.05(3) degrees, gamma = 90 degrees, Z = 4, R1 = 0.0657. 2Br3: orthorhombic, Pca2(1) a = 14.170(4) A, b = 10.623(3) A, c = 12.362(4) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.0289. Rate constants for H/D exchange (D2O, I = 1.0 M, NaClO4, 25 degrees C) of the syn and anti NH protons (rate law: kobs = ko + kH[OD-]) and the apical NH, and the NH3 and NH2 protons (rate law: kobs = kH[OD-]) in the 1, 2, and 3 cations are reported. Deprotonation constants (K = [Co(cyclen-H)(diamine)2+]/[Co(cyclen)(diamine)3+][OH-]) were determined for 1 (5.5 +/- 0.5 M-1) and 2 (28 +/- 3 M-1). In alkaline solution 1, 2, and 3 hydrolyze to [Co(cyclen)(OH)2]+ via [Co(cyclen)(amine)OH)]2+ monodentates. Hydrolysis of 3 is two step: kobs(1) = kOH(1)[OH-], kobs(2) = ko + kOH(2)[OH-] (kOH(1) = (2.2 +/- 0.4) x 10(4) M-1 s-1, ko = (5.1 +/- 1.2) x 10(-4) s-1, kOH(2) = 1.0 +/- 0.1 M-1 s-1). Hydrolysis of 2 is biphasic: kobs(1) = k1K[OH-]/(1 + K[OH-] (k1 = 5.0 +/- 0.2 s-1, K = 28 M-1), kobs(2) = k2K2[OH-]/(1 + K2[OH-]) (k2 = 3.5 +/- 1.2 s-1, K2 = 1.2 +/- 0.8 M-1). Hydrolysis of 1 is monophasic: kobs = k1k2KK2[OH-]2/(1 + K[OH-1])(k-1 + k2K2[OH-]) (k1 = 0.035 +/- 0.004 s-1, k-1 = 2.9 +/- 0.6 s-1, K = 5.5 M-1, k2K2 = 4.0 M-1 s-1). The much slower rate of chelate ring-opening in 1, compared to loss of NH3 from 3, is rationalized in terms of a reduced ability of the former system to allow the bond angle expansion required to produce the SN1CB trigonal bipyramidal intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号