首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, spectral characterization, and electrochemical properties of [Ru(phen)2(qdppz)]2+, which incorporates a quinone-fused dipyridophenazine ligand (naphtho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione, qdppz), are described in detail. Chemical or electrochemical reduction of [Ru(phen)2(qdppz)]2+ leads to the generation of [Ru(phen)2(hqdppz)](2+)--a complex containing the hydroquinone form (hqdppz = 5,18-dihydroxynaphtho[2,3-a]-dipyrido[3,2-h:2',3'-f]phenazine) of qdppz. Absorption and viscometric titration, thermal denaturation, topoisomerase assay, and differential-pulse voltammetric studies reveal that [Ru(phen)2(qdppz)]2+ is an avid binder of calf-thymus DNA due to a strong intercalation by the ruthenium-bound qdppz, while [Ru(phen)2(hqdppz)]2+ binds to DNA less strongly than the parent "quinone"-containing complex. DNA-photocleavage efficiencies of these complexes also follow a similar trend in that the MLCT-excited state of [Ru(phen)2(qdppz)]2+ is more effective than that of [Ru(phen)2(hqdppz)]2+ in cleaving the supercoiled plasmid pBR 322 DNA (lambda exc = 440 +/- 5 nm), as revealed by the results of agarose gel electrophoresis experiments. The photochemical behaviors of both the quinone- and hydroquinone-appended ruthenium(II) complexes in the presence of DNA not only provide valuable insights into their modes of binding with the duplex but also lead to detailed investigations of their luminescence properties in nonaqueous, aqueous, and aqueous micellar media. On the basis of the results obtained, (i) a photoinduced electron transfer from the MLCT state to the quinone acceptor in Ru(phen)2(qdppz)]2+ and (ii) quenching of the excited states due to proton transfer from water to the dipyridophenazine ligand in both complexes are invoked to rationalize the apparent lack of emission of these redox-related complexes in the DNA medium.  相似文献   

2.
A novel tris heteroleptic dipyridophenazine complex of ruthenium(II), [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, containing a covalently tethered ruthenium pentammine quencher coordinated through a bridging histidine has been synthesized and characterized spectroscopically and biochemically in a DNA environment and in organic solvent. Steady-state and time-resolved luminescence measurements indicate that the tethered Ru complex is quenched relative to the parent complexes [Ru(phen)(dppz)(bpy')]2+ and [Ru(phen)(dppz)(bpy'-his)]2+ in DNA and acetonitrile, consistent with intramolecular photoinduced electron transfer. Intercalated into guanine-containing DNA, [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, upon excitation and intramolecular quenching, is capable of injecting charge into the duplex based upon the EPR detection of guanine radicals. DNA-mediated charge transport is also indicated using a kinetically fast cyclopropylamine-substituted base as an electron hole trap. Guanine damage is not observed, however, in measurements using the guanine radical as the kinetically slower hole trap, indicating that back electron-transfer reactions are competitive with guanine oxidation. Moreover, transient absorption measurements reveal a novel photophysical reaction pathway for [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+ in the presence of DNA that is competitive with the intramolecular flash-quench process. These results illustrate the remarkably rich redox chemistry that can occur within a bimolecular ruthenium complex intercalated in duplex DNA.  相似文献   

3.
The hexafluorophosphate and chloride salts of two ruthenium(II) complexes, viz. [Ru(phen)(ptzo)2]2 and [Ru(ptzo)3]2+, where ptzo = 1,10-phenanthrolino[5,6-e]1,2,4-triazine-3-one (ptzo) — a new modified phenanthroline (phen) ligand, have been synthesised. These complexes have been characterised by infrared, UV-Vis, steady-state emission and1H NMR spectroscopic methods. Results of absorption and fluorescence titration as well as thermal denaturation studies reveal that both thebis- and tris-complexes of ptzo show moderately strong affinity for binding with calf thymus (CT) DNA with the binding constants being close to 105M-1 in each case. An intercalative mode of DNA binding has been suggested for both the complexes. Emission studies carried out in non-aqueous solvents and in aqueous media without DNA reveal that both [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+ are weakly luminescent under these solution conditions. Successive addition of CT DNA to buffered aqueous solutions containing [Ru(phen)(ptzo)2]2+results in an enhancement of the emission. These results have been discussed in the light of the dependence of the structure-specific deactivation processes of the MLCT state of the metallo-intercalator with the characteristic features of its DNA interaction. In doing so, attempts have been made to compare and contrast its properties with those of the analogous phenanthroline-based complexes including the ones reported by us previously.  相似文献   

4.
Cyclometalated ruthenium complexes having C(∧)N and N(∧)C type coordinating ligands with NAD(+)/NADH function have been synthesized and characterized by spectroscopic methods. The variation of the coordinating position of σ-donating carbon atom leads to a drastic change in their properties. Both the complex Ru(phbn)(phen)(2)]PF(6) ([1]PF(6)) and [Ru(pad)(phen)(2)]PF(6) ([2]PF(6)) reduced to Ru(phbnHH)(phen)(2)]PF(6) ([1HH]PF(6)) and [Ru(padHH)(phen)(2)]PF(6) ([2HH]PF(6)) by chemical and electrochemical methods. Complex [1]PF(6) photochemically reduced to [1HH]PF(6) in the presence of the sacrificial agent triethylamine (TEA) upon irradiation of visible light (λ ≥ 420 nm), whereas photochemical reduction of [2]PF(6) was not successful. Both experimental results and theoretical calculations reveal that upon protonation the energy level of the π* orbital of either of the ligands phbn or pad is drastically stabilized compared to the nonprotonated forms. In the protonated complex [Ru(padH)(phen)(2)](PF(6))(2) {[2H](PF(6))(2)}, the Ru-C bond exists in a tautomeric equilibrium with Ru═C coordination and behaves as a remote N-heterocyclic carbene (rNHC) compex; on the contrary, this behavior could not be observed in protonated complex [Ru(phbnH)(phen)(2)](PF(6))(2) {[1H](PF(6))(2)}.  相似文献   

5.
Transient spectral hole-burning (THB), a powerful technique for probing the electronic structures of coordination compounds, is applied to the lowest excited 3MLCT states of specifically deuterated [Ru(bpy)3]2+ complexes doped into crystals of racemic [Zn(bpy)3](ClO4)2. Results are consistent with and complementary to conclusions reached from excitation-line-narrowing experiments. Two sets of 3MLCT transitions are observed in conventional spectroscopy of [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2; n = 0, 2; m = 2, 8; n not = m) complexes doped into [Zn(bpy)3](ClO4)2. The two sets coincide with the 3MLCT transitions observed for the homoleptic [Ru(bpy-d(m))3]2+ and [Ru(bpy-d(n))3]2+ complexes and can thus be assigned to localized 3MLCT transitions to the bpy-d(m) and bpy-d(n) ligands. The THB experiments presented in this paper exclude a two-site hypothesis. When spectral holes are burnt at 1.8 K into 3MLCT transitions associated with the bpy and bpy-d2 ligands in [Ru(bpy)(bpy-d8)2]2+, [Ru(bpy)2(bpy-d8)]2+, and [Ru(bpy-d2)2(bpy-d8)]2+, side holes appear in the 3MLCT transitions associated with the bpy-d8 ligands approximately 40 and approximately 30 cm(-1) higher in energy. Since energy transfer to sites 40 or 30 cm(-1) higher in energy cannot occur at 1.8 K, the experiments unequivocally establish that the two sets of 3MLCT transitions observed for [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2) complexes in [Zn(bpy)3](ClO4)2 occur on one molecular cation.  相似文献   

6.
In search of potential anticancer drug candidates in ruthenium complexes, a series of mononuclear ruthenium complexes of the type [Ru(phen)(2)(nmit)]Cl(2) (Ru1), [Ru(bpy)(2)(nmit)]Cl(2) (Ru2), [Ru(phen)(2)(icpl)]Cl(2) (Ru3), Ru(bpy)(2)(icpl)]Cl(2) (Ru4) (phen=1,10-phenanthroline; bpy=2,2'-bipyridine; nmit=N-methyl-isatin-3-thiosemicarbazone, icpl=isatin-3-(4-Cl-phenyl)thiosemicarbazone) and [Ru(phen)(2)(aze)]Cl(2) (Ru5), [Ru(bpy)(2)(aze)]Cl(2) (Ru6) (aze=acetazolamide) and [Ru(phen)(2)(R-tsc)](ClO(4))(2) (R=methyl (Ru7), ethyl (Ru8), cyclohexyl (Ru9), 4-Cl-phenyl (10), 4-Br-phenyl (Ru11), and 4-EtO-phenyl (Ru12), tsc=thiosemicarbazone) were prepared and characterized by elemental analysis, FTIR, (1)H-NMR and FAB-MS. Effect of these complexes on the growth of a transplantable murine tumor cell line (Ehrlich Ascites Carcinoma) and their antibacterial activity were studied. In cancer study the effect of hematological profile of the tumor hosts have also been studied. In the cancer study, the complexes Ru1-Ru4, Ru10 and Ru11 have remarkably decreased the tumor volume and viable ascitic cell count as indicated by trypan blue dye exclusion test (p<0.05). Treatment with the ruthenium complexes prolonged the lifespan of Ehrlich Ascites Carcinoma (EAC) bearing mice. Tumor inhibition by the ruthenium chelates was followed by improvements in hemoglobin, RBC and WBC values. All the complexes showed antibacterial activity, except Ru5 and Ru6. Thus, the results suggest that these ruthenium complexes have significant antitumor property and antibacterial activity. The results also reflect that the drug does not adversely affect the hematological profiles as compared to that of cisplatin on the host.  相似文献   

7.
新型双核配合物的形成、与DNA的作用机制及荧光性质研究   总被引:5,自引:0,他引:5  
利用紫外、荧光和粘度等方法研究了含不同配体的钌(II)配合物[Ru(phen)2CImP]2+(CImP=3,4-二羟基-咪唑并[4,5-i][1,10]邻菲咯啉)和[Ru(phen)2TPPZ]2+(TPPZ=四吡啶[3,2-a:2',3'-c:3',2'-h:2',3'-j]吩嗪)与DNA的作用机制, 并研究了配合物与Zn2+配合后荧光性质变化. 结果表明[Ru(phen)2TPPZ]2+与DNA以插入模式作用, 而[Ru(phen)2CImP]2+与DNA则以沟面结合模式作用. 向配合物溶液中滴加Zn2+后, 配合物[Ru(phen)2TPPZ]2+和[Ru(phen)2CImP]2+均可以与Zn2+形成双核配合物[Ru(phen)2(TPPZ)Zn]4+和[Ru(phen)2(CImP)Zn]4+, 配合物的荧光减弱. 与DNA作用后, 配合物仍可以与Zn2+配位形成双核配合物, 但[Ru(phen)2(TPPZ)Zn]4+保持插入模式与DNA作用, 配合物的荧光减弱. 而[Ru(phen)2(CImP)Zn]4+与DNA则由沟面结合改为插入结合, 配合物的荧光增强.  相似文献   

8.
The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ?(H(2)O) = 0.005, 4: ?(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ~ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (?(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (?(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.  相似文献   

9.
New Ru polypyridine complexes [(bpy)2Ru(L)]2+, where bpy = 2,2'-bipyridine and L = dipyrido[3,2-a:2',3'-c]-phenazine-2-carboxylic acid (dppzc), dipyrido[3,2-f:2',3'-h]quinoxaline-2,3-dicarboxylic acid (dpq(COOH)2), 3-hydroxydipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxylic acid (dpq(OHCOOH)), 2,3-dihydroxydipyrido[3,2-f:2',3'-h]quinoxaline (dpq(OH)2), and [(L')Ru(dppzc)2]2+, where L' = bpy and 1,10-phenanthroline (phen), have been synthesized, characterized, and anchored to nanocrystalline TiO2 electrodes for light to electrical energy conversion in regenerative photoelectrochemical cells with I-/I2 acetonitrile electrolyte. These sensitizers have intense metal-to-ligand charge-transfer (MLCT) bands centered at approximately 450 nm. The effect of pH on the absorption and emission spectra of these complexes consisting of protonatable ligands has been investigated in water by spectrophotometric titration. The excited-state pKa values are more basic than the ground-state ones, except the pKa2 and pKa2* in [(bpy)2Ru(dpq(OH)2)]2+, which are equal, suggesting the localization of the lowest-energy MLCT on heteroaromatic bridging ligands, dppzc and dpq. Incident photon-to-current conversion efficiency (IPCE) is sensitive to the structural changes that resulted from introducing different functional groups, used for grafting.  相似文献   

10.
The complex framework [Ru(tpy)(dpk)]2+ has been used to study the generation and reactivity of the nitrosyl complex [Ru(tpy)(dpk)(NO)]3+ ([4]3+). Stepwise conversion of the chloro complex [Ru(tpy)(dpk)(Cl)]+ ([1]+) via [Ru(tpy)(dpk)(CH3CN)]2+ ([2]2+) and the nitro compound [Ru(tpy)(dpk)(NO2)]+ ([3]+) yielded [4]3+; all four complexes were structurally characterized as perchlorates. Electrochemical oxidation and reduction was investigated as a function of the monodentate ligand as was the IR and UV-vis spectroscopic response (absorption/emission). The kinetics of the conversion [4]3+/[3]+ in aqueous environment were also studied. Two-step reduction of [4]3+ was monitored via EPR, UV-vis, and IR (nu(NO), nu(CO)) spectroelectrochemistry to confirm the {RuNO}7 configuration of [4]2+ and to exhibit a relatively intense band at 505 nm for [4]+, attributed to a ligand-to-ligand transition originating from bound NO-.  相似文献   

11.
A pi-extended, redox-active bridging ligand 4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[2,3-a:3',2'-c]phenazine (L) was prepared via direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with 4,7-phenanthroline-5,6-dione. Reactions of L with [Ru(bpy)(2)Cl(2)] afforded its stable mono- and dinuclear ruthenium(II) complexes 1 and 2. They have been fully characterized, and their photophysical and electrochemical properties are reported together with those of [Ru(bpy)(2)(ppb)](2+) and [Ru(bpy)(2)(mu-ppb)Ru(bpy)(2)](4+) (ppb = dipyrido[2,3-a:3',2'-c]phenazine) for comparison. In all cases, the first excited state corresponds to an intramolecular TTF --> ppb charge-transfer state. Both ruthenium(II) complexes show two strong and well-separated metal-to-ligand charge-transfer (MLCT) absorption bands, whereas the (3)MLCT luminescence is strongly quenched via electron transfer from the TTF subunit. Clearly, the transient absorption spectra illustrate the role of the TTF fragment as an electron donor, which induces a triplet intraligand charge-transfer state ((3)ILCT) with lifetimes of approximately 200 and 50 ns for mono- and dinuclear ruthenium(II) complexes, respectively.  相似文献   

12.
New hybrid complexes of polypyridyl ruthenium and pyridylporphyrins have been prepared by the coordination of pyridyl nitrogens to the ruthenium centers. A 1:4 hybrid complex, [{Ru(bpy)(trpy)}4(mu4-H2Py4P)]8+ ([1]8+) (bpy = 2,2'-bipyridine; trpy = 2,2':6',2"-terpyridine; H2Py4P = 5,10,15,20-tetra(4-pyridyl)porphyrin), has been characterized by the single-crystal X-ray diffraction method. A 1:1 complex, [{Ru(bpy)(trpy)}(H2PyT3P)]2+ ([2]2+) (H2PyT3P = 5-(4-pyridyl)tritolylporphyrin) has also been prepared. The Soret band of the porphyrin ring shifts to longer wavelength with some broadening, the extent of the shift being larger for [1]8+. Cyclic voltammograms of the two complexes show simple overlap of the component redox waves. The complexes are weakly emissive at room temperature, which becomes stronger at lower temperatures. While [1]8+ at >140 K and [2]2+ at 77-280 K show only porphyrin fluorescence, [1]8+ at <140 K shows ruthenium and porphyrin phosphorescence, in addition to the porphyrin fluorescence.  相似文献   

13.
A series of diimine-tetracyanoosmate anions [Os(diimine)(CN)4]2- [diimine=2,2'-bipyridine (bipy), 2,2'-bipyrimidine (bpym), 1,10-phenanthroline (phen), and 4,4'-tBu2-2,2'-bipyridine (tBu2bpy)] were prepared and isolated as their Na+ salts (water soluble) or PPN+ salts (soluble in organic solvents). Several examples were crystallographically characterized; the Na+ salts form a range of 1D, 2D, or 3D infinite coordination polymers via coordination of the cyanide groups to Na+ cations in either an end-on or a side-on manner. The [Os(diimine)(CN)4]2- anions are solvatochromic, showing three MLCT absorptions, which are considerably blue-shifted in water compared to organic solvents, in the same way as is well-known for the analogous [Ru(diimine)(CN)4]2- anions. Luminescence in the red region of the spectrum is very weak but (following the expected solvatochromic behavior) is higher energy and more intense in water. However, by exploiting the effect of metallochromism (ref 4), the emission from [Os(tBu2bpy)(CN)4]2- in MeCN can be very substantially boosted in energy, intensity, and lifetime in the presence of Lewis-acidic metal cations (Na+, Ba2+, Zn2+), which, in a relatively noncompetitive solvent, coordinate to the cyanide groups of [Os(tBu2bpy)(CN)4]2-. This has an effect similar in principle to hydrogen bonding of the cyanides to delta+ protons of water, but very much stronger, such that in the presence of Zn2+ ions in MeCN the 1MLCT and 3MLCT absorptions are blue-shifted by ca. 7000 cm(-1), and the luminescence moves from 970 nm (vanishingly weak) to 610 nm with a lifetime of 120 ns (dominant component). Thus, the binding of metal cations to the cyanides provides a mechanism to incorporate [Os(diimine)(CN)4]2- complexes into polynuclear assemblies and simultaneously increases their 3MLCT energy and lifetime to an extent that makes them comparable to much-stronger luminophores such as Ru(II)-polypyridines.  相似文献   

14.
The nature of the binding of several ruthenium polypyridyl complexes containing 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (DMB), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (DPP), 2,2',2"-terpyridine (terpy), 2,2'-biquinoline (biq), 1,4,5,8-tetraazaphenanthrene (TAP) and 1,4,5,8,9,12-hexaazatriphenylene (HAT), with calf thymus DNA, poly[d(A-T)] and poly[d(G-C)] were studied by absorption and emission spectroscopy, DNA melting techniques, and emission lifetime measurements. In low ionic strength phosphate buffer, spectroscopic changes and DNA stabilization depended on the polypyridyl ligands present, and indicated binding that varied from substantially electrostatic to intercalative. Ru(bipy)2(HAT)2+ and Ru(phen)3(2+), which bind by partial intercalation, also show a strong preference for poly[d(A-T)]. The emission quantum yields for most complexes were increased in the presence of DNA. An exception was Ru(TAP)3(2+) which has a markedly reduced emission quantum yield and lifetime in the presence of poly[d(G-C)] or CT-DNA, due to photoredox interaction with quanines. Emission decays of the complexes generally showed multiexponential behaviour. The ability of the ruthenium complexes to sensitise DNA cleavage was determined using pBR322 plasmid DNA. Ru(TAP)3(2+) is the most efficient sensitiser while uncharged complexes and complexes with very short-lived excited states do not cleave DNA.  相似文献   

15.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

16.
[2]Rotaxanes based on the 1,2-bis(pyridinium)ethane subset[24]crown-8 ether motif were prepared that contain a terminal terpyridine group for coordination to a transition-metal ion. These rotaxane ligands were utilized in the preparation of a series of heteroleptic [Ru(terpy)(terpy-rotaxane)]2+ complexes. The compounds were characterized by 1D and 2D 1H NMR spectroscopy, X-ray crystallography, and high-resolution electrospray ionization mass spectrometry. The effect of using a rotaxane as a ligand was probed by UV/Vis/NIR absorption and emission spectroscopy of the Ru(II) complexes. In contrast with the parent [Ru(terpy)(2)]2+ complex, at room temperature the examined complexes exhibit a luminescence band in the near infrared region and a relatively long lived triplet metal-to-ligand charge-transfer (3MLCT) excited state, owing to the presence of strong-electron-acceptor pyridinium substituents on one of the two terpy ligands. Visible-light excitation of the Ru-based chromophore in acetonitrile at room temperature causes an electron transfer to the covalently linked 4,4'-bipyridinium unit and the quenching of the MLCT luminescence. The 3MLCT excited state, however, is not quenched at all in rigid matrix at 77 K. The rotaxane structure was found to affect the absorption and luminescence properties of the complexes. In particular, when a crown ether surrounds the cationic axle, the photoinduced electron-transfer process is slowed down by a factor from 2 to 3. Such features, together with the synthetic and structural advantages offered by [Ru(terpy)2]2+-type complexes compared to, for example, [Ru(bpy)3]2+-type compounds, render these rotaxane-metal complexes promising candidates for the construction of photochemical molecular devices with a wire-type structure.  相似文献   

17.
Two series of new complexes, [Ru(phen)2L]2+ and [RuL3]2+, where phen = 1,10-phenanthroline, and L denotes imidazo[4,5-f][1,10]phenanthroline (IP) or 2-(4-R-phenyl)imidazo[4,5-f][1,10]phenanthroline(PIP, R = H; HOP, R = –OH; MOP, R = –OMe; DMNP, R = NMe2; CLP, R = Cl; NOP, R = NO2), were synthesized and characterized. Their binding to calf thymus DNA was investigated using electronic absorption and emission spectroscopy. [Ru(IP)3]2+ and each [Ru(phen)2 L]2+ showed dramatic absorption hypochromism and bathochromicity, as well as steady-state emission intensity and excited-state lifetime enhancements {except nonluminescent [Ru(phen)2NOP]2+} associated with the presence of DNA, inferring that they bind to DNA by intercalation. These phenomena were not observed for [RuL3]2+ type complexes (except L = IP), indicating that they bind to DNA at most through electrostatic interactions.  相似文献   

18.
Chemical control of the DNA light switch: cycling the switch ON and OFF   总被引:2,自引:0,他引:2  
The emission of the DNA light-switch complex [Ru(bpy)2(tpphz)]2+ (bpy = 2,2'-bipyridine, tpphz = tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' ',3' '-j]phenazine) can be reversibly turned ON and OFF over several cycles. The tpphz and taptp (taptp = 4,5,9,18-tetraazaphenanthreno[9,10-b] triphenylene) ligands in [Ru(bpy)2(tpphz)]2+ and [Ru(bpy)2(taptp)]2+, respectively, intercalate between the DNA bases, and a 50-fold increase in emission intensity of [Ru(bpy)2(tpphz)]2+ is observed upon DNA intercalation. The [Ru(bpy)2(tpphz)]2+ DNA light switch can be turned OFF statically in the presence of Co2+, Ni2+, and Zn2+, and the emission can be fully restored by the addition of EDTA. Cycling of the DNA light switch OFF and ON can be accomplished through the successive introduction of Co2+ and EDTA, respectively, to solutions of DNA-bound [Ru(bpy)2(tpphz)]2+. Owing to the absence of additional coordination sites, the emission of DNA-intercalated [Ru(bpy)2(taptp)]2+ is not quenched by transition metal ions in solution. To our knowledge, this work presents the first example of a reversible DNA light switch.  相似文献   

19.
Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3. Hypochromicity and viscosity changes were observed that were consistent with DAP intercalation into DNA, and binding constants were measured in the range of 1.4-1.6 x 10(6) M(-1) for the mixed ligand complexes. Furthermore, the complex [Ru(bpy)2(DAP)]2+ was found to photocleave plasmid DNA upon irradiation with visible light.  相似文献   

20.
近年来 ,以钌 ( )多吡啶配合物为探针研究 DNA的结构已成为生物无机化学领域中的一个热点[1,2 ] .这些配合物由于热力学稳定性好 ,光化学和光物理信息丰富 ,在研究 DNA内部的电子转移和Fig.1  Structures of the ligandsDNA的结构识别等方面均有重要的作用[3~ 7] .在配合物与 DNA的相互作用中 ,配合物的形状、大小以及中心离子电荷等都有一定的影响[8] ,其中 ,配合物的形状起着至关重要的作用 ,与 DNA的形状匹配的配合物与DNA的结合较强 .这些配合物中通常含有平面性较大的芳香环配体 ,可插入到 DNA的碱基对之间 ,并与 DNA具有…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号