首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The compounds Cp2Ln[N(QPPh2)2] (Ln = La (1), Gd (2), Er (3), or Yb (4) for Q = Se, Ln = Yb (5) for Q = S) have been synthesized from the corresponding rare-earth tris(cyclopentadienyl) compound and H[N(QPPh2)2]. The structures of compounds 1, 2, 3, and 5, as determined by X-ray crystallography, consist of a Cp2Ln fragment, coordinated eta 3 through two chalcogen atoms and an N atom of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]-. In compound 4, the Cp2Yb moiety is coordinated eta 2 through the two Se atoms of the [N(SePPh2)2]-ligand. 31P and 77Se (for 1) NMR spectroscopies lend insight into the solution nature of these species. Crystal data: 1, C34H30LaNP2Se2, triclinic, P1, a = 9.7959(10) A, b = 12.4134(13) A, c = 13.9077(14) A, alpha = 88.106(2) degrees, beta = 88.327(2) degrees, gamma = 68.481(2) degrees, V = 1572.2(3) A3, T = 153 K, Z = 2, and R1(F) = 0.0257 for the 5947 reflections with I > .2 sigma(I); 2, C34H30GdNP2Se2, triclinic, P1, a = 9.7130(14) A, b = 12.2659(17) A, c = 13.953(2) A, alpha = 88.062(2) degrees, beta = 87.613(2) degrees, gamma = 69.041(2) degrees, V = 1550.7(4) A3, T = 153 K, Z = 2, and R1(F) = 0.0323 for the 5064 reflections with I > 2 sigma(I); 3, C34H30ErNP2Se2, triclinic, P1, a = 9.704(2) A, b = 12.222(3) A, c = 13.980(4) A, alpha = 88.230(4) degrees, beta = 87.487(4) degees, gamma = 69.107(4) degrees, V = 1547.4(7) A3, T = 153 K, Z = 2, and R1(F) = 0.0278 for the 6377 reflections with I > 2 sigma(I); 4, C34H30NP2Se2Yb.C4H8O, triclinic, P1, a = 12.087(4) A, b = 12.429(4) A, c = 23.990(7) A, alpha = 89.406(5) degrees, beta = 86.368(5) degrees, gamma = 81.664(5) degrees, V = 3558.8(18) A3, T = 153 K, Z = 4, and R1(F) = 0.0321 for the 11,883 reflections with I > 2 sigma(I); and 5, C34H30NP2S2Yb, monoclinic, P21/n, a = 13.8799(18) A, b = 12.6747(16) A, c = 17.180(2) A, beta = 91.102(3) degrees, V = 3021.8(7) A3, T = 153 K, Z = 4, and R1(F) = 0.0218 for the 6698 reflections with I > 2 sigma(I).  相似文献   

2.
The reactions of Na+ R[O]CS- (R = Me, Ph) with mixtures of CuCl and PPh3 in stoichiometric ratios yielded the compounds [Cu4(SC[O]Me)4(PPh3)4] (1), [Cu4(SC[O]Ph)4(PPh3)3] (2), [Cu2(SC[O]Me)2(PPh3)4] (3), [Cu(SC[O]Ph)(PPh3)2] (4), and [Cu2(SC[O]Ph)2(PPh3)3] (5) quantitatively. Compound 2 was also obtained from mixtures of CuCl, PPh3, and NaSC[O]Ph in the ratio 1:1:1. The analogous thioacetate compound similar to 2 and the thiobenzoate analogue of 1 could not be obtained. Attempts to prepare the unsymmetrical dimer of a thioacetate compound similar to 5 gave a mixture of 1 and 3. The structures of 1-4 have been determined by single-crystal X-ray diffraction methods. Crystal data for 1: triclinic space group Pl, a = 11.5844(3) A, b = 13.2459(3) A, c = 14.3433(3) A, alpha = 64.019(1) degrees, beta = 79.297(1) degrees, gamma = 69.426(1) degrees, V = 1850.98(7) A3, Z = 1, Dcalcd = 1.439 g.cm-3. Crystal data for 2.0.5CH2Cl2.H2O: triclinic space group P1, a = 12.4413(1) A, b = 15.5443(1) A, c = 20.4637(3) A, alpha = 94.974(1) degrees, beta = 95.976(1) degrees, gamma = 100.450(1) degrees, V = 3848.09(7) A3, Z = 2, Dcalcd = 1.416 g.cm-3. Single-crystal data for 3: monoclinic space group P2(1)/n, a = 15.2746(2) A, b = 23.2947(2) A, c = 19.0518(3) A, beta = 96.713(1) degrees, V = 6732.5(2) A3, Z = 4, Dcalcd = 1.309 g.cm-3. Crystal data for 4: triclinic space group P1, a = 10.2524(3) A, b = 12.9826(4) A, c = 14.5340(4) A, alpha = 87.723(1) degrees, beta = 75.322(1) degrees, gamma = 75.978(1) degrees, V = 1815.14(9) A3, Z = 2, Dcalcd = 1.327 g.cm-3. Compound 1, [mu 3-SC[O]Me-S)2(mu-SC[O]Me-S)2(CuPPh3)4], is a tetramer with a distorted stepladder structure in which two copper atoms are trigonally coordinated and the other two are tetrahedrally coordinated. Two bonding modes, namely, mu 3-S and mu 2-S, were observed for the Me[O]CS- anion. The structure of 2 may be described as a highly distorted cubanoid structure and formulated as [(mu 3-SC[O]Ph-S3)(mu 3-SC[O]Ph-S2,O)3(Cu)(CuPPh3)3]. In 2, three copper atoms have tetrahedral coordination geometry and one copper atom is trigonally coordinated. Unprecedented bonding modes, namely, mu 3-S, have been observed for the R[O]CS- anions, in 1 and 2 and mu 3-S2,O in 2. Compound 3, [(mu-SC[O]MeS)(mu-SC[O]Me-S,O)[Cu(PPh3)2]2] is a dimer with mu 2-S and mu 2-S,O bonding modes of Me[O]CS- ligands. Monomeric structure was found in 4 in which the copper atom has trigonal planar geometry with a very weak intramolecular interaction with O. Variable temperature 31P NMR studies in solution show the presence of various species in equilibria.  相似文献   

3.
The molecular structures of terphenyl derivatives of trivalent ytterbium, thulium, and yttrium of general composition DnpLnCl(2)(THF)(2) [Dnp = 2,6-di(1-naphthyl)phenyl] are reported. The complexes (Ln = Yb: 1; Ln = Tm: 2; Ln = Y: 3) are synthesized by reaction of 1 equiv of DnpLi with 1 equiv of LnCl(3) (Ln = Yb, Tm, or Y) in tetrahydrofuran at room temperature in 50% yield. Attempts to prepare a Dnp scandium compound gave heterobimetallic [(THF)(3)Sc(2)OCl(5)Li(THF)](2) (4) in low yield. 1 crystallizes in the monoclinic space group C2/c. Crystal data for 1 at 203 K: a = 14.333(3) A, b = 16.353(3) A, c = 12.427(2) A, beta = 91.021(4) degrees, Z = 4, D(calcd) = 1.637 g cm(-3), R(1) = 4.44%. 2 crystallizes in the monoclinic space group C2/c. Crystal data for 2 at 203 K: a = 14.333(1) A, b = 16.374(2) A, c = 12.404(1) A, beta = 90.934(2) degrees, Z = 4, D(calcd) = 1.628 g cm(-3), R(1) = 3.00%. 3 crystallizes in the monoclinic space group C2/c. Crystal data for 3 at 203 K: a = 14.348(3) A, b = 16.476(3) A, c = 12.356(2) A, beta = 90.987(4) degrees, Z = 4, D(calcd) = 1.441 g cm(-3), R(1) = 5.62%. 4 crystallizes in the monoclinic space group P2(1)/n. Crystal data for 4 at 203 K: a = 11.0975(9) A, b = 11.0976(9) A, c = 21.3305(18) A, beta = 94.718(2) degrees, Z = 2, D(calcd) = 1.051 g cm(-3), R(1) = 3.45%. Complexes 1-3 represent examples of novel chiral (racemic) organometallic complexes of the lanthanide elements ytterbium and thulium and the group 3 element yttrium, respectively. The molecular structures of monomeric 1-3 exhibit distorted trigonal-bipyramidal coordination environments at the metal center, with the two oxygen atoms of the tetrahydrofuran ligands occupying the axial positions of a trigonal-bipyramidal coordination polyeder. The molecular structure of the scandium compound 4 shows a complex polynuclear heterobimetallic arrangement.  相似文献   

4.
To fine-tune the design of optimized donor ligands for nuclear waste actinide selective extraction, both electronic and molecular structures of the actinide complexes that are formed must be investigated. In particular, to achieve the selective complexation of transplutonium 3+ ions versus lanthanide 3+ ions is one of the major challenges, given the chemical similarities between these two f-element families. In this work, the structure of solvent-phase M(NO3)3(TEMA)2 complexes (Ln = Nd, Eu, Ho, Yb, Lu, Am; TEMA = N,N,N',N'-tetraethylmalonamide) was investigated by liquid-phase spectroscopic methods among which extended X-ray absorption fine structure played a major role. In addition, the crystal structures of the species Nd(NO3)3(TEMA)2 and Yb(NO3)3(TEMA)2 have been determined by X-ray diffraction. Nd(NO3)3(C11N2O2H22)2 crystallizes in the monoclinic system (P2(1) space group; a = 11.2627(4) A, b = 20.5992(8) A, c = 22.2126(8) A; alpha = gamma = 90 degrees, beta = 102.572(1) degrees; Z = 6), and Yb(NO3)3(C11N2O2H22)2 crystallizes in the orthorhombic system (P2(1)2(1)2(1) space group; a = 9.3542(1) A, b = 18.1148(2) A, c = 19.7675(2) A; alpha = beta = gamma = 90 degrees; Z = 4). In the solvent phase, the metal polyhedron was found to be similar to that of the solid-state complex Nd(NO3)3(TEMA)2 for M = Nd to Ho. For M = Yb and Lu, a significant elongation of one nitrate oxygen bond was observed. Comparison with measurements on the Am(NO3)3(TEMA)2 complex in ethanol has shown the similarities between the Nd3+ and Am3+ coordination spheres.  相似文献   

5.
Wan Y  Zhang L  Jin L  Gao S  Lu S 《Inorganic chemistry》2003,42(16):4985-4994
Six new coordination polymers, [Eu(1,2-BDC)(1,2-HBDC)(phen)(H(2)O)](n) (1), [Eu(2)(1,3-BDC)(3)(phen)(2)(H(2)O)(2)](n).4nH(2)O (2), [Eu(1,4-BDC)(3/2)(phen)(H(2)O)](n) (3), [Yb(2)(1,2-BDC)(3)(phen)(H(2)O)(2)](n).3.5nH(2)O (4), [Yb(2)(1,3-BDC)(3)(phen)(1/2)](n) (5), and [Yb(2)(1,4-BDC)(3)(phen)(2)(H(2)O)](n) (6), were synthesized by hydrothermal reactions of lanthanide chlorides with three isomers of benzenedicarboxylic acid (H(2)BDC) and 1,10-phenanthroline (phen), and characterized by single-crystal X-ray diffraction. 1 has a 2-D herringbone architecture with a Z-shaped cavity. 2 and 5 have different 3-D networks, but both are formed by 1,3-BDC anions bridging metal centers (Eu or Yb) via carboxylate groups. 3 and 6 possess similar layer structures which are further constructed to form 3-D networks by hydrogen bonds and/or pi-pi aromatic interactions. 4 comprises 1-D chains that are further interlinked via hydrogen bonds, resulting in a 3-D network. In the three europium complexes, all the europium ions are eight-coordinated, while the coordination numbers of the ytterbium ions in other three-coordination polymers range from six to eight. Crystal data: for 1, monoclinic, space group P2(1)/c, with a = 12.565(6) A, b = 16.005(8) A, c = 12.891(6) A, beta = 102.173(8) degrees, and Z = 4; for 2, monoclinic, space group P2(1)/c, with a = 20.979(4) A, b = 11.5989(19) A, c = 20.810(3) A, beta = 110.391(3) degrees, and Z = 4; for 3, triclinic, space group P1, with a = 10.331(5) A, b = 10.887(5) A, c = 11.404(5) A, alpha = 107.660(7) degrees, beta = 91.787(7) degrees, gamma = 112.946(6) degrees, and Z = 2; for 4, triclinic, space group P1, with a = 11.517(5) A, b = 13.339(5) A, c = 13.595(6) A, alpha = 87.888(7) degrees, beta = 67.759(6) degrees, gamma = 68.070(6) degrees, and Z = 2; for 5, orthorhombic, space group C222(1), with a = 8.174(2) A, b = 24.497(7) A, c = 29.161(8) A, and Z = 8; for 6, triclinic, space group P1, with a = 10.349(3) A, b = 11.052(3) A, c = 19.431(6) A, alpha = 105.464(4) degrees, beta = 91.300(5) degrees, gamma = 93.655(5) degrees, and Z = 2. The magnetic properties of 1 and 4 were investigated. The photophysical properties of 1 were also studied.  相似文献   

6.
本文合成了镧系金属高氯酸盐与1,8-萘啶氮氧化物形成的Ln(C8H6N2O)4(ClO4)3(Ln=Sm-Lu)的固体配合物. 进行了元素分析、红外光谱、差热-热重分析和摩尔电导测定, 并作了Eu(ClO4)2与1,8-萘啶氮氧化物配合物的X射线单晶结构分析. 结果表明Eu^3^+离子与4个配体的氧原子和氮原子配位, 配位数为8.  相似文献   

7.
Du B  Meyers EA  Shore SG 《Inorganic chemistry》2001,40(17):4353-4360
Sheet- and column-like cyanide bridged lanthanide-transition metal arrays were synthesized through metathesis reactions between anhydrous LnCl(3) (Ln = Eu, Yb) and A(2)[M(CN)(4)] (A = K(+), NH(4)(+); M = Ni, Pt) in a 1:2 molar ratio in DMF (DMF = N,N-dimethylformamide) solution. Single-crystal X-ray analysis revealed that complexes of formula [K(DMF)(7)Ln[M(CN)(4)](2)](infinity) (Ln = Eu, M = Ni, 1; Ln = Yb, M = Pt, 2) consist of infinite layers of neutral, puckered sheets that contain hexagonal rings of composition [(DMF)(10)Ln(2)[M(CN)(4)](3)](6) with interstitial (DMF)(4)K(2)[M(CN)(4)] units located between the layers. The sheet structure is generated through the repeating (DMF)(10)Ln(2)[M(CN)(4)](3) unit with trans cyanide ligands in [M(CN)(4)](2)(-) serving as bridges. The column-like complex [(NH(4))(DMF)(4)Yb[Pt(CN)(4)](2)](infinity), 3, is formed when NH(4)(+) replaces K(+). It consists of infinite, negatively charged, square, parallel columns bundled through N-H...NC hydrogen bonds between NH(4)(+) and terminal CN from the columns. Cis cyanide ligands in [Pt(CN)(4)](2)(-) units serve as bridges. Complex 3 is the first known example where Ln(III) centers are coordinated to four [M(CN)(4)](2)(-) units. Bicapped (square face) trigonal prismatic coordination geometries were observed for Ln(III) centers in 1 and 2. Square antiprismatic geometry for Yb(III) centers are observed in 3. Crystal data for 1: triclinic space group P1, a = 8.797(2) A, b = 15.621(3) A, c = 17.973(6) A, alpha = 105.48(2) degrees, beta = 98.60(2) degrees, gamma = 98.15(2) degrees, Z = 2. Crystal data for 2: triclinic space group P1, a = 8.825(1) A, b = 15.673(1) A, c = 17.946(1) A, alpha = 105.46(2) degrees, beta = 99.10(1) degrees, gamma = 98.59(1) degrees, Z = 2. Crystal data for 3: monoclinic space group P2(1)/c, a = 9.032(1) A, b = 29.062(1) A, c = 15.316(1) A, beta = 94.51(1) degrees, Z = 2.  相似文献   

8.
描述了一事三苯基氧胂Ph3AsO.H2O(1)及其与氯化三苯基锡,氯化三对氯苯基锡及氯化三苯基铅配合物「Ph3SnCl(OAsPh3)」(2),「(ClPh)3SnCl(OAsPH3)」(3)和」Ph3PbCl(OAsPh3)(4)的合成和晶体结构,晶体数据分别为(1)单斜晶系,空间群P2、/n,a=9.4604(7),b=16.6347(7),c=11.1544(11)A,B=113.233(6  相似文献   

9.
Three new polynuclear copper(II) complexes, derived from the end-on azido bridging ligand and pyridine derivatives, have been synthesized, and their crystal structures have been determined by X-ray diffraction methods; they are the dinuclear compounds [Cu2(mu 1,1-N3)2(4-Etpy)4(mu-NO3)2] (1), and [Cu2(mu 1,1-N3)2(3-ampy)4(mu-NO3)2]. C2H5OH (2), and the trinuclear [Cu3(mu 1,1-N3)4(N3)2(Meinic)2(DMF)2] (3). 4-Etpy is 4-ethylpyridine, 3-ampy is 3-aminopyridine, and Meinic is methylisonicotinate. Compound 1, C28H36Cu2N12O6, crystallized in the monoclinic system, space group P2(1)/n, with a = 12.355(9) A, b = 12.474(4) A, c = 12.854(6) A, beta = 117.68(4) degrees, and Z = 2. Compound 2, C22H30Cu2N16O7, crystallized in the triclinic system, space group P1, with a = 9.695(2) A, b = 10.895(2) A, c = 7.909(2) A, alpha = 96.81(3) degrees, beta = 96.40(3) degrees, gamma = 96.56(3) degrees and Z = 1. Compound 3, C20H28-Cu3N22O6, crystallized in the monoclinic system, space group P2(1)/n, with a = 7.755(2) A, b = 14.680(5) A, c = 15.810(5) A, beta = 102.81(2) degrees, and Z = 2. 1-3 have the symmetric [Cu(mu 1,1-N3)2Cu]2+ core and structural parameters outside the previously reported range. Magnetic susceptibility data, measured from 2 to 300 K, show strong ferromagnetic coupling for the dinuclear end-on compounds 1 and 2 and bulk moderate ferromagnetic coupling for the trinuclear compound 3. These data were fitted to the appropriate equations derived from the Hamiltonian H = -JS1S2 for 1 and 2 and from the Hamiltonian H = -J1(SA1SB + SA2SB) - J2SA1.SA2 for 3, giving the parameters J = 230.1(1) cm-1, g = 2.17(0.01) for 1, J = 223.2(2) cm-1, g = 2.16(0.01) for 2, and J1 = 47.3(2) cm-1, J2 = -22.5(1) cm-1, gA = 2.26(0.02), gB = 2.07(0.03) for 3. The magnetic susceptibility data can be correlated with the structural parameters.  相似文献   

10.
The Schiff base ligands 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L1, monoclinic, P2(1)/c, a = 3.856(1) A, b = 11.032(2) A, c = 12.738(3) A, beta = 92.21(3) degrees, Z = 2) and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (L2, monoclinic, P2(1)/c, a = 10.885(2) A, b = 4.613(1) A, c = 14.978(3) A, beta = 92.827(4) degrees, Z = 2) were used in the synthesis of four new organic-inorganic coordination polymers, each of them adopting a different structural motif. Synthesis, X-ray structural determinations, and spectroscopic and thermogravimetric analyses are presented. The reaction between Co(NO(3))(2).6H(2)O and L1 afforded a two-dimensional noninterpenetrating brick-wall structure, [Co(C(12)N(4)H(10))(1.5)(NO(3))(2)(H(2)O)(CH(2)Cl(2))(2)](n)() (1, triclinic, P1; a = 10.242(7) A, b = 10.802(7) A, c = 15.100(1) A, alpha = 70.031(1), beta = 75.168(11), gamma = 76.155(11), Z = 2), while Ni(NO(3))(2).6H(2)O combined with L1 yielded an interpenetrating three-dimensional rhombus-grid polymer, [Ni(C(12)N(4)H(10))(2)(NO(3))(2)(OC(4)H(8))(1.66)(H(2)O)(0.33)](n) (2, monoclinic, C2/c; a = 20.815(8) A, b = 23.427(8) A, c = 17.291(6) A, beta = 116.148(6), Z = 8). The reaction of Co(NO(3))(2).6H(2)O and L2 was found to be solvent-sensitive and resulted in the formation of two different noninterpenetrating compounds: [Co(C(14)N(4)H(14))(2)(NO(3))(2)(C(6)H(6))(1.5)](n)() (3, monoclinic, C2/c; a = 22.760(2) A, b = 21.010(3) A, c = 25.521(2) A, beta = 97.151(2), Z = 8), which adopts a two-dimensional square-grid motif formed by propeller-type modules, and [Co(C(14)N(4)H(14))(1.5)(NO(3))(2)(CH(2)Cl(2))(2)](n)() (4, monoclinic, P2(1)/n; a = 14.432(2) A, b = 14.543(8) A, c = 15.448(4) A, beta = 96.968(0), Z = 4), consisting of T-shaped building blocks assembled into a one-dimensional ladder-type structure. These four coordination polymers all exhibit impressive thermal stability. Thermogravimetric studies showed that after complete removal of the solvents, the frameworks are stable to temperatures between 234 degrees C and 260 degrees C.  相似文献   

11.
Lanthanide bis((cyclooctane-1,5-diyl)dihydroborate) complexes (THF)(4)Ln[(micro-H)(2)BC(8)H(14)](2) (Ln = Eu, 1; Yb, 2) were synthesized by a metathesis reaction between (THF)(x)()LnCl(2) and K[H(2)BC(8)H(14)] in THF in a 1:2 molar ratio. Attempts to prepare the monosubstituted lanthanide cyclic organohydroborates (THF)(x)LnCl[(micro-H)(2)BC(8)H(14)] were unsuccessful. On the basis of the molecular structure and IR spectrum of 1, there is an agostic interaction between Eu(II) and one of the alpha-C-H hydrogens from the [(micro-H)(2)BC(8)H(14)] unit. No such interaction was observed for 2. The coordinated THF in 1 and 2 can be removed under dynamic vacuum, but the solvent ligands remain bound to Yb when 2 is directly dissolved in Et(2)O or toluene. In strong Lewis basic solvents, such as pyridine or CH(3)CN, attack of the Yb-H-B bridge bonds results. Decomposition of 2 to the 9-BBN dimer in CD(2)Cl(2) was observed by (11)B and (1)H NMR spectroscopies. Compound 2 was reacted with 2 equiv of the hydride ion abstracting reagent B(C(6)F(5))(3) to afford the solvent-separated ion pair [Yb(THF)(6)][HB(C(6)F(5))(3)](2) (3). Complexes 1, 2, and 3 were characterized by single-crystal X-ray diffraction analysis. Crystal data: 1 is orthorhombic, Pna2(1), a = 21.975(1) A, b = 9.310(1) A, c = 16.816(1) A, Z = 4; 2 is triclinic, P1, a = 9.862(1) A, b = 10.227(1) A, c = 10.476(1) A, alpha = 69.87(1) degrees, beta = 76.63(1) degrees, gamma = 66.12(1) degrees, Z = 1; 3.Et(2)O is triclinic, P1, a = 13.708(1) A, b = 14.946(1) A, c = 17.177(1) A, alpha = 81.01(1) degrees, beta = 88.32(1) degrees, gamma = 88.54(1) degrees, Z = 2.  相似文献   

12.
A series of tris(N,N-dialkylcarbamato)antimony(III) complexes, Sb(O(2)CNR(2))(3) (R = Me, Et, Pr(i)()), have been synthesized and are the first members of this class of compound to have been crystallographically characterized. Sb(O(2)CNMe(2))(3) (1) exists as a weakly bound dimer, whereas its diethyl and diisopropyl analogues (2, 3) are monomeric. In addition, tetrakis(N,N-diethylcarbamato)tin(IV) (4) has been prepared for comparison and shown by single-crystal X-ray analysis to exhibit the relatively rare SnO(8) coordination. Crystallographic data: for 1, a = 8.7520(5) A, b = 14.2970(8) A, c = 11.8150(7) A, beta = 108.029(2) degrees, monoclinic, P2(1)/c, Z = 4; for 2, a = b = 14.4690(2) A, c = 16.6740(2) A, trigonal, Rthremacr;, Z = 6; for 3, a = 11.9881(2) A, b = 11.6521(3) A, c = 19.8780(6) A, beta = 90.401(1) degrees, monoclinic, P2(1)/n, Z = 4; for 4, a = 13.9654(2) A, b = 12.0817(2) A, c = 16.6752(2) A, beta = 108.1960(7) degrees, monoclinic, C2/c, Z = 4. Sb(O(2)CNMe(2))(3) has been used as a single-source precursor in the low-pressure chemical vapor deposition of the senarmonite form of Sb(2)O(3).  相似文献   

13.
New salt-inclusion lanthanide silicates, [K 9F 2][Ln 3Si 12O 32] (Ln = Sm, Eu, Gd), have been synthesized using a KF-MoO 3 flux, and structurally characterized by single-crystal and powder X-ray diffraction. The structures of these three isostructural compounds consist of open-branched funfer silicate single layers with six-, eight-, and twelve-membered rings, which are connected via LnO 6 octahedra to form a 3-D framework. The F (-) and K (+) ions are located in the structural channels and form a F 2K 7 dimer with a structure similar to that of Cl 2O 7. The photoluminescence properties of the Eu compound have also been studied. The sharp peaks in the room-temperature emission spectrum are assigned and the relative intensities of the (5)D 0 --> (7)F 1 and (5)D 0 --> (7)F 2 transitions are consistent with the crystallography results. Crystal data for the Eu compound: triclinic, space group P1 (No. 2), a = 6.8989(2) A, b = 11.3834(4) A, c = 11.4955(4) A, alpha = 87.620(2) degrees , beta = 89.532(2) degrees , gamma = 80.221(2) degrees , and Z = 2. Crystal data for the Sm compound: The same as those for the Eu compound except a = 6.9152(6) A, b = 11.400(1) A, c = 11.531(1) A, alpha = 87.610(1) degrees , beta = 89.445(1) degrees , and gamma = 80.081(1) degrees .  相似文献   

14.
Doubly bridged mu-alkoxo-mu-X (X = pyrazolato or acetato) dinuclear MnIII complexes of 2-hydroxy-N-{2-hydroxy-3-[(2-hydroxybenzoyl)amino]propyl}benzamide) (H5L1) and 2-hydroxy-N-{2-hydroxy-4-[(2-hydroxybenzoyl)amino]butyl}benzamide (H5L2), [Mn2(L)(pz)(MeOH)4].xMeOH (1, L = L1, x = 0.5; 2, L = L2, x = 0; Hpz = pyrazole) and [Mn2(L1)(OAc)(MeOH)4] (3), have been prepared, and their structure and magnetic properties have been studied. The X-ray diffraction analysis of 1 (C24.5H34Mn2N4O9.5, triclinic, P, a = 12.2050(7) A, b = 12.7360(8) A, c = 19.2780(10) A, alpha = 99.735(5) degrees , beta = 96.003(4) degrees , gamma = 101.221(5) degrees , V = 2867.6(3) A3, Z = 4), 2 (C25H34Mn2N4O9, triclinic, P, a = 9.4560(5) A, b = 11.0112(5) A, c = 13.8831(6) A, alpha = 90.821(4) degrees , beta = 92.597(4) degrees , gamma = 93.403(4) degrees , V = 1441.29(12) A3, Z = 2), and 3 (C23H32Mn2N2O11, triclinic, P, a = 10.511(5) A, b = 11.713(5) A, c = 13.135(5) A, alpha = 64.401(5) degrees , beta = 74.000(5) degrees , gamma = 66.774(5) degrees , V = 1329.3(10) A3, Z = 2) revealed that all complexes consist of dinuclear units which are further extended into 1D (1 and 3) and 2D (2) supramolecular networks via hydrogen-bonding interactions. Magnetic susceptibility data evidence antiferromagnetic interactions for all three complexes: J = -3.6 cm-1, D approximately 0 cm-1, g = 1.93 (1); J = -2.7 cm-1, D = 0.8 cm-1, g = 1.93 (2); J = -4.9 cm-1, D = 3.8 cm-1, g = 1.95 (3).  相似文献   

15.
Kim Y  Suh M  Jung DY 《Inorganic chemistry》2004,43(1):245-250
Two new photoluminescent compounds with the formulas of [Eu(2)(adipate)(3)(H(2)O)].H(2)O (1) and [Eu(2)(adipate)(3)(4H(2)O)] (2) were synthesized by using Eu(III) chloride and adipic acid under hydrothermal reaction conditions in aqueous solution. Compound 1, a 3-D layered framework, possesses infinite Eu-O-Eu polyhedral chains and self-assembled adipate ligands between Eu-O layers. Compound 2 has dimeric Eu(2)O(16) units interconnected by adipate ligand, resulting in 2-D open frameworks with a cavity among the ligands. Crystal data 1: monoclinic space group C2/c, with a = 14.2486(12) A, b = 8.2733(7) A, c = 39.298(2) A, beta = 99.530(6) degrees, and Z = 8. 2: monoclinic space group P2(1)/c, with a = 11.661(4) A, b = 14.011(3) A, c = 9.013(4) A, beta = 110.87(3) degrees, and Z = 2. The ligand conformations of two Eu(III)-adipate (1 and 2) compounds present anti/anti/anti, gauche/anti/gauche, and intermediate forms. Both compounds 1 and 2 showed strong red luminescence upon excitation, and their luminescence decay involves the multiphonon relaxation mechanism.  相似文献   

16.
The stepwise course of the synthesis of homo- (4f, 4f) and heterodilanthanide (4f, 4f ') complexes has been investigated through structural determination of the intermediate and final products occurring in the process. In the first step, the tripodal ligand H(3)L is reacted with Ln(NO(3))(3) x 5H(2)O to give a complex (H(3)L)Ln(NO(3))(3) in which the ligand does exist in a zwitterionic form. This unexpected feature has been definitely supported by a structural determination performed on a closely related complex (HL')(3)Ln(NO(3))(3) (1). These species are fairly stable and may be isolated. In basic medium, (H(3)L)Ln(NO(3))(3) is deprotonated to yield a neutral LLn complex crystallized as LLnNaClO(4) (2), the lanthanide ion being linked to the inner N(4)O(3) coordination site of the ligand. Finally, addition of Ln'(NO(3))(3) x 5H(2)O (Ln' being similar or different from Ln) to the LLn complex yields the desired homo- or heterodinuclear LLnLn'(NO(3))(3) complex 3, where the Ln' ion is coordinated to the outer O(3)O(3) coordination site of the tripodal ligand. Complex 1 (Ln = La) crystallizes in the triclinic space group P1 (No. 2): a = 11.1883(7) A, b = 11.8993(9) A, c = 16.4197(10) A, alpha = 81.900 (6) degrees, beta = 79.406(5) degrees, gamma = 79.470(6) degrees, V = 2099.5(2) A(3), Z = 2. Complex 2 (Ln = Eu) crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 13.6333(13) A, b = 15.3799(12) A, c = 17.1473(13) A, beta = 111.283(10) degrees, V = 3350.2(5) A(3), Z = 4. Complex 3 (Ln = Ln' = Dy) crystallizes in the trigonal space group R3 (No. 148) with a = b = 23.847(3) A, c = 42.982(2) A, V = 21168(4) A(3), Z = 18. Complex 3 possesses a Dy(O(phenoxo))(3)Dy core, and a nitrato anion has been replaced by a eta(2)-chelated o-vanillin anion. We did not succeed in obtaining crystals of any of the heterodinuclear LLnLn'(NO(3))(3) entities, but their existence was unambiguously confirmed by positive fast atom bombardment mass spectrometry experiments.  相似文献   

17.
Two lanthanide-organic frameworks were synthesized via hydrothermal methods. Compound 1 ([(Eu,Tb)(C6H8O4)3(H2O)2].(C10H8N2), orthorhombic, Pbcn, a = 21.925(2) A, b = 7.6493(7) A, c = 19.6691(15) A, alpha = beta = gamma = 90 degrees, Z = 4) takes advantage of the similar ionic radii of the lanthanide elements to induce a mixed-lanthanide composition. Compound 2 ([Tb2(C6H8O4)3(H2O)2].(C10H8N2), orthorhombic, Pbcn, a = 21.866(3) A, b = 7.6101(10) A, c = 19.646(3) A, alpha = beta = gamma = 90 degrees, Z = 8) is the terbium-only analogue of compound 1. Solid-state measurements of their luminescence behavior demonstrate that the neutral guest molecule (4,4'-dipyridyl) residing in the extraframework channels is successful in sensitizing lanthanide ion emission. In compound 1, columinescence occurs, and both lanthanide ions show emission. Additionally, quantum yield and lifetime measurements support the premise that the Tb3+ center is also acting to sensitize the Eu3+, effectively enhancing Eu3+ emission.  相似文献   

18.
1 INTRODUCTION In the past decade or so far, the construction of extended multidimensional coordination polymers comprised of metal ions as nodes and bridged ligand as linkers or spacers of self-assembly has attracted considerable attention in supramolecular and materi- als chemistry due to the formation of the intriguing topological structures and potential applications as functional materials[1~4]. In construction of these ex- tended structures, selection of the polydentate orga- nic li…  相似文献   

19.
以哌嗪为模板剂,在水-乙醇混合溶剂体系中溶剂热合成了两个具有三维开放骨架结构的稀土硫酸盐[Ln4(H2O)4(SO4)10](C4N2H12)4(H2O)4(Ln = Gd,化合物1和Eu,化合物2),并对其进行了结构表征、热重以及荧光光谱分析. 单晶结构解析表明,化合物1和2属于同构异质,均结晶于单斜晶系,P21/c空间群,化合物1,a = 19.691(3) ?,b = 19.249(3) ?,c = 13.186(2) ?,β = 92.33(0)o,V = 4993.5(1) ?3, Z =4. 化合物2,a = 19.7233(8) ?,b = 19.2791(8) ?,c = 13.2095(5) ?,β = 92.329(1)o,V = 5018.7(3) ?3, Z =4. 两个化合物在ab平面上由SO4,GdO8和GdO9多面体共边或共角交错连接形成含有八元环和十六元环的二维层状结构,该二维层沿c方向平行排列,相邻层通过SO4四面体相连形成具有孔道的三维开放骨架结构,其孔道之中包含平衡骨架负电荷的质子化哌嗪分子. 化合物2的固体荧光光谱分析显示其在397nm激发波长下,表现出典型的Eu3+发光性质.    相似文献   

20.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号