首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

2.
Products from the reaction of + nido ten-vertex : nido eight-vertex, B(16)H(20) with [{(IrCl(2)(eta(5)-C(5)Me(5))}(2)] and tmnd show unanticipated rearrangement of the starting {B(16)} skeleton, as exhibited by + nido ten-vertex : nido ten-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(17)Cl] which has a {B(2)} edge conjunction and by + nido ten-vertex : nido eleven-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(15)Cl] which has a {B(3)} face conjunction.  相似文献   

3.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

4.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

5.
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.  相似文献   

6.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

7.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

8.
The platinum(0) monocarbonyl complex, [(Cy(3)P)(2)Pt(CO)], was synthesized by reaction of [(Cy(3)P)(2)Pt] with [(η(5)-C(5)Me(5))Ir(CO)(2)] and subsequent irradiation. X-ray structure analysis was performed and represents the first structural evidence of a platinum(0) monocarbonyl complex bearing two free phosphine ligands. Its corresponding dicarbonyl complex [(Cy(3)P)(2)Pt(CO)(2)] was synthesized by treatment of [(Cy(3)P)(2)Pt] with CO at -40 °C and confirmed by X-ray structure analysis.  相似文献   

9.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

10.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

11.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

12.
Reactions of hexanuclear carbonyl clusters of rhodium Rh(6)(CO)(16) and ruthenium Ru(6)(eta(6)-C)(micro(2)-CO)(CO)(16) with GaCp*(Cp*= C(5)Me(5)) in the mild conditions result in substitution of CO ligands and formation of the Rh(6)(CO)(12)(micro(3)-GaCp*)(4) and the Ru(6)(eta(6)-C)(micro(2)-CO)(CO)(13)(micro(3)-GaCp*)(2)(micro(2)-GaCp*) cluster derivatives.  相似文献   

13.
Treatment of IrCl(3)x H(2)O with one equivalent of 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) in N,N-dimethylformamide (dmf) afforded [IrCl(3)(dmf)(dtbpy)] (1). Alkylation of 1 with Me(3)SiCH(2)MgCl resulted in C--Si cleavage of the Me(3)SiCH(2) group and formation of the Ir(III) silyl dialkyl compound [Ir(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] (2), which reacted with tBuNC to afford [Ir(tBuNC)(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] ([2(tBuNC)]). Reaction of 2 with phenylacetylene afforded dimeric [{Ir(C[triple chemical bond]CPh)(dtbpy)(SiMe(3))}(2)(mu-C[triple chemical bond]CPh)(2)] (3), in which the bridging PhC[triple chemical bond]C(-) ligands are bound to Ir in a mu-sigma:pi fashion. Alkylation of 1 with PhMe(2)CCH(2)MgCl afforded the cyclometalated compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))(2-C(6)H(4)CMe(3))] (4), which features an agostic interaction between the Ir center and the 2-tert-butylphenyl ligand. The cyclic voltammogram of 4 in CH(2)Cl(2) shows a reversible Ir(IV)-Ir(III) couple at about 0.02 V versus ferrocenium/ferrocene. Oxidation of 4 in CH(2)Cl(2) with silver triflate afforded an Ir(IV) species that exhibits an anisotropic electron paramagnetic resonance (EPR) signal in CH(2)Cl(2) glass at 4 K with g( parallel)=2.430 and g( perpendicular)=2.110. Protonation of 4 with HCl and p-toluenesulfonic acid (HOTs) afforded [{Ir(dtbpy)(CH(2)CMe(2)Ph)Cl}(2)(mu-Cl)(2)] (5) and [Ir(dtbpy)(CH(2)CMe(2)Ph)(OTs)(2)] (6), respectively. Reaction of 5 with Li[BEt(3)H] gave the cyclometalated complex [{Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))}(2)(mu-Cl)(2)] (7). Reaction of 4 with tetracyanoethylene in refluxing toluene resulted in electrophilic substitution of the iridacycle by C(2)(CN)(3) with formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(3){4-C(2)(CN)(3)})(2-C(6)H(4)CMe(3))] (8). Reaction of 4 with diethyl maleate in refluxing toluene gave the iridafuran compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)}] (9). Treatment of 9 with 2,6-dimethylphenyl isocyanide (xylNC) led to cleavage of the iridafuran ring and formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){C(CO(2)Et)CH(CO(2)Et)}(xylNC)] (10). Protonation of 9 with HBF(4) afforded the dinuclear neophyl complex [(Ir(dtbpy)(CH(2)CMe(2)Ph){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)})(2)][BF(4)](2) (11). The solid-state structures of complexes 2-5 and 8-11 have been determined.  相似文献   

14.
Coordinatively unsaturated diruthenium complexes, [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+, of which crystallography revealed structures bearing a bridging amidinate ligand perpendicular to the Ru-Ru axis, were synthesized by anion exchange of [(eta5-C3Me5(Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+ Br- by weakly coordinating anions. Variable-temperature NMR showed rapid motion of the bridging amidinate ligand. The coordinatively unsaturated nature of the cationic complexes provides their high reactivity toward a series of two electron donor ligands. Oxidative addition of molecular hydrogen occurred to give [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)(mu-H)Ru(eta5-C5Me5)(H)]+, which was isolated and characterized.  相似文献   

15.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

16.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

17.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

18.
Electrochemical reduction of the dinuclear [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]2+ ions (M = Rh, Ir; L = 2,5-bis(1-phenyliminoethyl)pyrazine (bpip) and 2,5-bis[1-(2,6-dimethylphenyl)iminoethyl]pyrazine (bxip)) proceeds via the paramagnetic intermediates [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]+ (L = bpip) or [(eta 5-C5Me5)M(mu-L)MCl(eta 5-C5Me5)]2+ (L = bxip) and [(eta 5-C5Me5)M(mu-L)M(eta 5-C5Me5)]+. Whereas the first is clearly a radical species with a small g anisotropy, the chloride-free cations are distinguished by structured intervalence charge transfer (IVCT) bands in the near-infrared region and by rhombic electron paramagnetic resonance features between g = 1.9 and g = 2.3, which suggests considerable metal participation at the singly occupied MO. Alternatives for the d configuration assignment and for the role of the bisbidentate-conjugated bridging ligands will be discussed. The main difference between bpip and bxip systems is the destabilization of the chloride-containing forms through the bxip ligand for reasons of steric interference.  相似文献   

19.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

20.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号