首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preparations, X-ray structures, and detailed physical characterizations are presented for two new mixed-valence tetranuclear manganese complexes that function as single-molecule magnets (SMM's): [Mn4(hmp)6Br2(H2O)2]Br2-4H2O (2) and [Mn4(6-me-hmp)6Cl4]-4H2O (3), where hmp(-) is the anion of 2-hydroxymethylpyridine and 6-me-hmp(-) is the anion of 6-methyl-2-hydroxymethylpyridine. Complex 2-4H2O crystallizes in the space group P2(1)/c, with cell dimensions at -160 degrees C of a = 10.907(0) A, b = 15.788(0) A, c = 13.941(0) A, beta = 101.21(0) degrees, and Z = 2. The cation lies on an inversion center and consists of a planar Mn4 rhombus that is mixed-valence, Mn2(III)Mn2(II). The hmp(-) ligands function as bidentate ligands and as the only bridging ligands in 2-4H2O. Complex 3-4H2O crystallizes in the monoclinic space group C2/c, with cell dimensions at -160 degrees C of a = 17.0852(4) A, b = 20.8781(5) A, c = 14.835(3) A, beta = 90.5485(8) degrees, and Z = 4. This neutral complex also has a mixed-valence Mn2(III)Mn2(II) composition and is best described as having four manganese ions arranged in a bent chain. A mu2-oxygen atom of the 6-me-hmp(-) anion bridges between the manganese ions; the Cl(-) ligands are terminal. Variable-field magnetization and high-frequency and -field EPR (HFEPR) data indicate that complex 2-4H2O has a S = 9 ground state whereas complex 3.4H(2)O has S = 0 ground state. Fine structure patterns are seen in the HFEPR spectra, and in the case of 2.4H(2)O it was possible to simulate the fine structure assuming S = 9 with the parameters g = 1.999, axial zero-field splitting of D/k(B) = -0.498 K, quartic longitudinal zero-field splitting of B4(omicron)/k(B) = 1.72 x 10(-5) K, and rhombic zero-field splitting of E/k(B) = 0.124 K. Complex 2-4H2O exhibits a frequency-dependent out-of-phase AC magnetic susceptibility signal, clearly indicating that this complex functions as a SMM. The AC susceptibility data for complex 2-4H2O were measured in the 0.05-4.0 K range and when fit to the Arrhenius law, gave an activation energy of DeltaE = 15.8 K for the reversal of magnetization. This DeltaE value is to be compared to the potential-energy barrier height of U/k(B) = absolute value DSz(2) = 40.3 K calculated for 2-4H2O.  相似文献   

2.
A one-dimensional chain of interconnected single-molecule magnets (SMMs) is obtained that consists of [Mn(4)(hmp)(6)](4+) units bridged by chloride ions. Slow magnetization relaxation is evident in the AC susceptibility data and in magnetization hysteresis measurements for [Mn(4)(hmp)(6)Cl(2)](n)(ClO(4))(2)(n). The magnetization hysteresis loops for this complex are similar to those for an SMM and show significant coercive field and steps at regular magnetic intervals. Spin-canted antiferromagnetic coupling due to misalignment of easy axes of neighboring Mn(4) units is also observed for this complex.  相似文献   

3.
Three dodecanuclear Mn clusters [Mn12O10(OMe)3(OH)(O2CC6H3F2)16(MeOH)2].8MeOH (1), [Mn12O10(OMe)4(O2CBu(t))16(MeOH)2] (2), and [Mn12O12(O2CBu(t))16(MeOH)4] (3) synthesized by reductive aggregation reactions are reported. Clusters 1 and 2 possess a central alkoxide-bridged planar Mn4 topology, whereas 3 is a new high-symmetry member of the normal Mn12 family. Complexes 1 and 2 crystallize in the monoclinic space groups C2/c and P2(1)/n, respectively. Both consist of four Mn(IV) and eight Mn(III) ions held together by 10 mu3-O2- ions, and either (i) one mu-OH- and three mu-MeO- groups for 1 or (ii) four mu-MeO- groups for 2. Complex 3 crystallizes in the orthorhombic space group Aba2 and possesses the normal Mn12 structure but with terminal MeOH molecules. The cyclic voltammogram (CV) of 1 exhibits no reversible redox processes. Variable-temperature, solid-state dc and ac magnetic susceptibility measurements on 1 and 2 reveal that they possess S = 5 and 9 ground states, respectively. In addition, ac susceptibility measurements on complex 1 in a zero dc field in the temperature range 1.8-10 K and in a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display a nonzero frequency-dependent out-of-phase (chi(M)') signal at temperatures below 3 K, with the peak maxima lying at temperatures below 1.8 K. For complex 2, two frequency dependent chi(M)' signals are seen, one in the higher temperature range of 3-5 K and a second at lower temperatures with its peak maxima at temperatures below 1.8 K. Single-crystal magnetization vs dc field scans down to 0.04 K for 1.8MeOH and 2 show hysteresis behavior at <1 K, confirming that both complexes are new examples of SMMs.  相似文献   

4.
《Polyhedron》2005,24(16-17):2065-2075
A brief survey is provided of single-molecule magnets (SMMs), or molecular nanomagnets. The [Mn12O12(O2CR)16(H2O)4] (Mn12; R = various) family of SMMs continues to be the one with the highest blocking temperatures, and the one on which the most detailed studies are being performed within the chemistry and physics communities. For this reason, methods have been developed for their controlled modification in various ways, and these are summarized. In addition, new SMMs continue to be sought to improve knowledge of this phenomenon, and several representative examples of new synthetic procedures and the resulting products are described.  相似文献   

5.
Methods are reported for the preparation of mixed-carboxylate versions of the [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] family of single-molecule magnets (SMMs). [Mn(12)O(12)(O(2)CCHCl(2))(8)(O(2)CCH(2)Bu(t))(8)(H(2)O)(3)] (5) and [Mn(12)O(12)(O(2)CHCl(2))(8)(O(2)CEt)(8)(H(2)O)(3)] (6) have been obtained from the 1:1 reaction of the corresponding homocarboxylate species. Complex 5.CH(2)Cl(2).H(2)O crystallizes in the triclinic space group P1 with, at -165 degrees C, a = 15.762(1), b = 16.246(1), c = 23.822(1) A, alpha = 103.92(1), beta = 104.50(1), gamma = 94.23(1) degrees, Z = 2, and V = 5674(2) A(3). Complex 6.CH(2)Cl(2) crystallizes in the triclinic space group P1 with, at -158 degrees C, a = 13.4635(3), b = 13.5162(3), c = 23.2609(5) A, alpha = 84.9796(6), beta = 89.0063(8), gamma = 86.2375(6) degrees, Z = 2, and V = 4207.3(3) A(3). Complexes 5 and 6 both contain a [Mn(12)O(12)] core with the CHCl(2)CO(2-) ligands ordered in the axial positions and the RCO(2-) ligands (R = CH(2)Bu(t) (5) or Et (6)) in equatorial positions. There is, thus, a preference for the CHCl(2)CO(2-) to occupy the sites lying on the Mn(III) Jahn-Teller axes, and this is rationalized on the basis of the relative basicities of the carboxylate groups. Direct current magnetic susceptibility studies in a 10.0 kG field in the 2.00-300 K range indicate a large ground-state spin, and fitting of magnetization data collected in the 10.0-70.0 kG field and 1.80-4.00 K temperature range gave S = 10, g = 1.89, and D = -0.65 K for 5, and S = 10, g = 1.83, and D = -0.60 K for 6. These values are typical of [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes. Alternating current susceptibility studies show the out-of-phase susceptibility (chi(M)' ') signals characteristic of the slow relaxation in the millisecond time scale of single-molecule magnets. Arrhenius plots obtained from chi(M)' ' versus T data gave effective barriers to relaxation (U(eff)) of 71 and 72 K for 5 and 6, respectively. (1)H NMR spectra in CD(2)Cl(2) show that 5 and 6 are the main species present on dissolution, but there is evidence for some ligand distribution between axial and equatorial sites, by intra- and/or intermolecular exchange processes.  相似文献   

6.
7.
The promising future of storing and processing quantized information at the molecular level has been attracting the study of Single-Molecule Magnets (SMMs) for almost three decades. Although some recent breakthroughs are mainly about the SMMs containing only one lanthanide ion, we believe SMMs can tell a much deeper story than the single-ion anisotropy. Here in this Perspective, we will try to draw a unified picture of SMMs as a delicately coupled spin system between multiple spin centres. The hierarchical couplings will be presented step-by-step, from the intra-atomic hyperfine coupling, to the direct and indirect intra-molecular couplings with neighbouring spin centres, and all the way to the inter-molecular and spin–phonon couplings. Along with the discussions on their distinctive impacts on the energy level structures and thus magnetic behaviours, a promising big picture for further studies is proposed, encouraging the multifaceted developments of molecular magnetism and beyond.

In this Perspective, we draw a unified picture for single-molecule magnets as delicately coupled spin systems, discuss the hierarchical couplings (from intra-atomic to inter-molecular) and their distinctive impacts on the magnetic behaviours.  相似文献   

8.
The reaction of the pentadentate Schiff-base ligand 1,3-bis(salicylideneamino)-2-propanol (salproH3) with [Mn3O(O2CR)6(py)3] (R = Me, Et, But) gives the corresponding tetranuclear manganese product [Mn4O2O2CR)5(salpro)] (4Mn(III)). The syntheses, structure and magnetochemical characterization of these complexes are reported. The structure of the [Mn4(mu3-O)2]8+ is butterfly-like much more closed than in previous complexes with this core as a result of the alkoxide oxygen of the salpro ligand bridging the two wingtip Mn atoms. Variable-temperature, solid-state magnetic susceptibility studies reveal that these complexes possess S = 0 ground state spins. Fitting of the magnetic susceptibility data to the theoretical chiMT vs. T expression derived for a C2v symmetry complex, assuming an isotropic Heisenberg spin-Hamiltonian and using the Van Vleck equation, revealed that the various exchange parameters are all antiferromagnetic, and the core thus experiences spin frustration effects.  相似文献   

9.
Tetranuclear Fe(II) cubic complexes were synthesized with Schiff base ligands bridging the Fe(II) centers. X-ray structural analyses of six ferrous cubes, [Fe4(sap)4(MeOH)4].2H2O (1), [Fe4(5-Br-sap)4(MeOH)4] (2), [Fe4(3-MeO-sap)4(MeOH)4].2MeOH (3), [Fe4(sae)4(MeOH)4] (4), [Fe4(5-Br-sae)4(MeOH)4].MeOH (5), and [Fe4(3,5-Cl2-sae)4(MeOH)4] (6) (R-sap and R-sae were prepared by condensation of salicylaldehyde derivatives with aminopropyl alcohol and aminoethyl alcohol, respectively) were performed, and their magnetic properties were studied. In 1-6, the alkoxo groups of the Schiff base ligands bridge four Fe(II) ions in a mu3-mode forming [Fe4O4] cubic cores. The Fe(II) ions in the cubes have tetragonally elongated octahedral coordination geometries, and the equatorial coordination bond lengths in 4-6 are shorter than those in 1-3. Dc magnetic susceptibility measurements for 1-6 revealed that intramolecular ferromagnetic interactions are operative to lead an S = 8 spin ground state. Analyses of the magnetization data at 1.8 K gave the axial zero-field splitting parameters (D) of +0.81, +0.80, +1.15, -0.64, -0.66, and -0.67 cm(-1) for 1-6, respectively. Ac magnetic susceptibility measurements for 4-6 showed both frequency dependent in- and out-of-phase signals, while 1-3 did not show out-of-phase signals down to 1.8 K, meaning 4-6 are single-molecule magnets (SMMs). The energy barriers to flip the spin between up- and down-spin were estimated to 28.4, 30.5, and 26.2 K, respectively, for 4-6. The bridging ligands R-sap2- in 1-3 and R-sae2- in 4-6 form six- and five-membered chelate rings, respectively, which cause different steric strain and Jahn-Teller distortions at Fe(II) centers. The sign of the D value was discussed by using angular overlap model (AOM) calculations for irons with different coordination geometry.  相似文献   

10.
A new approach to the deposition of Mn12 single-molecule magnet monolayers on the functionalized Au(111) surface optimized for the investigation by means of scanning tunneling spectroscopy was developed. To demonstrate this method, the new Mn12 complex [Mn12O12(O2CC6H4F)16(EtOH)4].4.4CHCl3 was synthesized and characterized. In MALDI-TOF mass spectra the isotopic distribution of the molecular ion peak of the latter complex was revealed. The complex was grafted to Au(111) surfaces via two different short conducting linker molecules. The Mn12 molecules deposited on the functionalized surface were characterized by means of scanning tunneling microscopy showing homogeneous monolayers of highest quality. Scanning tunneling spectroscopy measurements over a wider energy range compared with previous results could be performed because of the optimized Au(111) surface functionalization. Furthermore, the results substantiate the general suitability of short acidic linker molecules for the preparation of Mn12 monolayers via ligand exchange and represent a crucial step toward addressing the magnetic properties of individual Mn12 single-molecule magnets.  相似文献   

11.
The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to [Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear [Mn(4)O(6)] backbone, to either side of which are attached two [Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting [Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.  相似文献   

12.
《Polyhedron》2005,24(16-17):2280-2283
Several tetranuclear nickel(II) single-molecule magnets (SMMs) have been prepared with the general composition of [Ni(hmp)(ROH)X]4 · S, where hmp is the monoanion of 2-hydroxymethylpyridine, X is either Cl or Br and S is the solvate molecule. Magnetization versus magnetic field hysteresis loops for these Ni4 SMMs show that there is a relatively fast rate of magnetization tunneling (small coercive field) and, in certain cases, an exchange bias present. Detailed measurements have been carried out in order to determine the origin of the fast magnetization tunneling. High-field electron paramagnetic resonance (HFEPR) data were collected on a single crystal of [Zn(hmp)(dmb)Cl]4 doped with a small amount of Ni(II), where, dmb is 3,3-dimethyl-1-butanol. These variable-frequency/temperature data give values of the single-ion zero-field splitting parameters Di and Ei, and the orientations of these interactions, for the single NiII ions in a Zn3Ni complex doped into a Zn4 crystal. HFEPR data were also obtained at many frequencies and temperatures for a single crystal of isostructural [Ni(hmp)(dmb)Cl]4. Rotation of the single crystal such that the external field is positioned in the hard plane clearly establishes that the transverse zero-field interaction B44 is the cause of the fast magnetization tunneling in the S = 4 ground state of this SMM. The magnitude of B44 and the Ni4 D value can be related to the directionality and magnitude of the Di and Ei interactions at the individual NiII ions, determined for the doped crystal. The microenvironments and ligand dynamics were probed by means of a single-crystal X-ray structure at 12 K and by heat capacity data.  相似文献   

13.
Reaction of pentadentate Schiff-base ligands, 1,3-bis(3-methoxysalicylideneamino)-2-propanol (H3msap) with manganese(II) salts afforded tetranuclear mixed-valent manganese complexes, [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)]·H2O (1) and [Mn4(msap)2(C6H5CO2)3(CH3O)] (2), which were characterized by elemental analysis, infrared and diffused reflectance spectra and temperature dependence of magnetic susceptibilities (4.5–300 K). Single-crystal X-ray crystallography of these complexes showed that four manganese atoms are chelated by two Schiff-base ligands and further coordinated by synsyn bridging, synanti bridging, and monodentate or bidentate-carboxylato groups, forming a Y-shaped cluster made up of two MnII and two MnIII atoms. Diffused reflectance spectra are featureless, showing broad bands around at near-UV and visible regions. Magnetic moments decrease with lowering of temperature, showing an antiferromagnetic behavior of these complexes.  相似文献   

14.
Spin-frustrated polyoxometalates, K(11)H[(VO)(3)(SbW(9)O(33))(2)].27H(2)O (1) and K(12)[(VO)(3)(BiW(9)O(33))(2)].29H(2)O (2), containing approximately equilateral and isosceles (VO)(3)(6+)-triangles (V(IV)...V(IV) separation of 5.4-5.5 A) sandwiched by two diamagnetic alpha-B nonatungstate ligands ([SbW(9)O(33)](9)(-) and [BiW(9)O(33)](9)(-)) with approximate D(3)(h) symmetry, are found to show magnetization jumps with distinct hysteresis for the S = (1)/(2) <--> S = (3)/(2) level crossing under fast sweeping pulsed magnetic fields (approximately 10(3) T/s) at T < or = 0.5 K. This unusual phenomenon is attributed to the theoretical prediction of half step magnetization, which is expected for an antiferromagnetic spin triangle with antisymmetrical Dzyaloshinky-Moriya interaction. The degeneracy of the S = (1)/(2) states for 1 is removed by slightly lower symmetry effects of triangular structure for 2. The calorimetry of 1 and 2 shows the heat capacity anomaly at 2 < or = T < or = 20 K which is associated with a thermal excitation from the S = (1)/(2) ground states to the S = (3)/(2) state at zero field. Zero-field splitting energies (5-7 K) between S = (1)/(2) and S = (3)/(2) states for 1 and 2, readily estimated by the level-crossing field for the magnetization, allow us to measure the hyperfine-structural 22 lines due to three equivalent I = (7)/(2) (51)V nuclei, the fine-structural triplet line of the S = (3)/(2) excited state, and the g anisotropy on the high-frequency ESR spectra. The spin-frustrated (VO)(3)(6+)-triangle for 1 and 2 is a good model of the magnetization between pure quantum states S = (1)/(2) and (3)/(2) and provides a new class of single-molecule magnets.  相似文献   

15.
The reaction of MnCl2.4H2O (3 equiv), pyridine-2,6-dimethanol (pdmH2) (10 equiv), and NaN3 (10 equiv) in MeOH/MeCN (1:2 v/v) with NMe4OH (1 equiv) gave [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6](Cl)2.12MeCN (1.12MeCN) in approximately 30% yield. The cation of complex 1 comprises five Mnx layers of three types in an ABCBA arrangement. Fitting of variable-temperature and -field magnetization data establishes that 1 has an S = 51/2 ground state, the largest value for a molecular species. The complex also displays hysteresis loops below 0.6 K in magnetization vs applied field sweeps, establishing it as the largest spin single-molecule magnet to date.  相似文献   

16.
17.
Four tetrameric nickel(II) pseudohalide complexes have been synthesized and structurally, spectroscopically, and magnetically characterized. Compounds 1-3 are isostructural and exhibit the general formula [Ni(2)(dpk·OH)(dpk·CH(3)O)(L)(H(2)O)](2)A(2)·2H(2)O, where dpk = di-2-pyridylketone; L = N(3)(-), and A = ClO(4)(-) for 1, L = NCO(-) and A = ClO(4)(-) for 2, and L = NCO(-) and A = NO(3)(-) for 3. The formula for 4 is [Ni(4)(dpk·OH)(3) (dpk·CH(3)O)(2)(NCO)](BF(4))(2)·3H(2)O. The ligands dpk·OH(-) and dpk·CH(3)O(-) result from solvolysis and ulterior deprotonation of dpk in water and methanol, respectively. The four tetramers exhibit a dicubane-like core with two missing vertexes where the Ni(II) ions are connected through end-on pseudohalide and oxo bridges. Magnetic measurements showed that compounds 1-4 are ferromagnetic. The values of the exchange constants were determined by means of a theoretical model based on three different types of coupling. Thus, the calculated J values (J(1) = J(2), J(3), and D) were 5.6, 11.8, and 5.6 cm(-1) for 1, 5.5, 12.0, and 5.6 cm(-1) for 2, 6.3, 4.9, and 6.2 cm(-1) for 3, and (J(1), J(2), J(3), and D) 6.9, 7.0, 15.2, and 4.8 cm(-1) for 4.  相似文献   

18.
Single-molecule detection (SMD) is becoming more and more popular in the scientific community and is on the threshold to become a technique for laboratory use. Therefore, conceivable applications as well as optimized conditions for SMD will be discussed. To point out the possibilities of SMD, the signal-to-background ratio and the detection efficiency, in combination with the probability of misclassification, will be contemplated.  相似文献   

19.
Four heterometallic, enneanuclear Mn8Ce clusters [Mn8CeO8(O2CMe)12(H2O)4] (4), [Mn8CeO8(O2CMe)12(py)4] (5), [Mn8CeO8(O2CPh)12(MeCN)4] [Mn8CeO8(O2CPh)12(dioxane)4] (6), and [Mn8CeO8(O2CCHPh2)12(H2O)4] (7) have been prepared by various methods. Their cores are essentially isostructural and comprise a nonplanar, saddlelike [MnIII8O8]8+ loop containing a central CeIV ion attached to the eight micro3-O2- ions. Peripheral ligation around the [Mn8CeO8]12+ core is provided by eight micro- and four micro3-O2CR- groups. Terminal ligation on four MnIII atoms is provided by H2O in 4 and 7, pyridine in 5, and MeCN/dioxane in 6. Solid-state magnetic susceptibility studies, fits of dc magnetization vs field and temperature data, and in-phase ac susceptibility studies in a zero dc field have established that complexes 4, 5, and 7 possess S=16, S=4 or 5, and S=6+/-1 spin ground states, respectively, but in all cases there are very low-lying excited states. The large variation in the ground-state spins for this isostructural family is rationalized as due to a combination of weak exchange interactions between the constituent MnIII atoms, and the presence of both nearest-neighbor and next-nearest-interactions of comparable magnitudes. Magnetization vs applied dc field sweeps on single crystals of 4.4H2O and 7.4H2O.3MeCN.2CH2Cl2 down to 0.04 K have established that these two complexes are new single-molecule magnets (SMMs). The former also shows an exchange-bias, a perturbation of its single-molecule properties from very weak intermolecular interactions mediated by hydrogen-bonding interactions with lattice-water molecules of crystallization.  相似文献   

20.
The reaction of Mn(O?CMe)?·2H?O with Me-saoH? (Me-saoH? = 2-hydroxyphenylethanone oxime) in MeCN forms the complex [Mn(III)?(Me-sao)?(Me-saoH)?] (1) in good yields. Replacing Me-saoH? with Naphth-saoH? (Naphth-saoH? = 2-hydroxy-1-napthaldoxime) in the presence of CH?ONa forms the complex [Mn(III)?(Naphth-sao)?(Naphth-saoH)?] (2) in low yields, while the reaction between Mn(ClO?)?·6H?O, Et-saoH? (Et-saoH?= 2-hydroxypropiophenone oxime) and NBu?OH in MeCN gives the complex [Mn(III)?(Et-sao)?(Et-saoH)?] (3) in moderate yields. All three tetrametallic cages exclusively contain Mn(III) centres arranged in a "cube"-like topology, in which the metal centres are connected by -N-O(oximate) groups. The magnetic properties of 1-3 are near identical, revealing the presence of only ferromagnetic interactions between the metal ions leading to high-spin ground states of S = 8. The complexes display frequency dependent out-of-phase signals in ac susceptibility studies and, in the case of 1 single-molecule magnetism has been observed by means of single-crystal hysteresis loop measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号