首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical or electrochemical reduction of the 1,4,7-trithiacyclononane (9S3) complexes [MII(9S3)2][BF4]2 (M = Re (3a) or Tc (3b)) results in instantaneous C-S bond cleavage to yield ethene and the stable MIII thiolate complexes [MIII(9S3)L][BF4] (M = Re (4a) or Tc (4b), L = SCH2CH2SCH2CH2S). Compounds 4 have been characterized by 1H NMR spectroscopy, and the pseudo-octahedral geometry of 4b has been confirmed by X-ray crystallography. Upon electrochemical reduction 4a loses ethene, while 4b can be reversibly reduced to [TcII(9S3)L], which is then further reduced to Tc(I) with loss of ethene. Successive ethene loss is observed in the mass spectra of compounds 3 and 4. The radiosynthesis of 4a with 188Re can be comfortably completed within 10 min starting with 188ReO4- from a 188W/188Re generator, with a radiochemical yield in excess of 90%, and thus represents a practical approach to the preparation of stable 188Re (and 99mTc) thioether complex derivatives/conjugates for clinical use. Crystal data: 4b, C10H20S6Tc, orthorhombic Pbca, a = 12.233(2) A, b = 14.341(2) A, c = 20.726(3) A, Z = 8.  相似文献   

2.
Neutral and asymmetrical hydrazido(3-)rhenium(V) heterocomplexes of the type [Re(eta(2)-L(4))(L(n))(PPh(3))] (eta(2)-L(4) = NNC(SCH(3))S; H(2)L(1) = S-methyl beta-N-((2-hydroxyphenyl)ethylidene)dithiocarbazate, 1, H(2)L(2) = S-methyl beta-N-((2-hydroxyphenyl)methylidene)dithiocarbazate, 2) are prepared via ligand-exchange reactions in ethanolic solutions starting from [Re(V)(O)Cl(4)](-) in the presence of PPh(3) or from [Re(V)(O)Cl(3)(PPh(3))(2)]. The distorted octahedral coordination sphere of these compounds is saturated by a chelated hydrazido group, a facially ligated ONS Schiff base, and PPh(3). Reduction-substitution reactions starting from [NH(4)][Re(VII)O(4)] in acidic ethanolic mixtures containing PPh(3) and H(2)L(n) (or its dithiocarbazic acid precursor H(3)L(4)) produce another example of chelated hydrazido(3-) rhenium(V) derivative, namely [Re(eta(2)-L(4))Cl(2)(PPh(3))(2)], 3. On the contrary, the N-methyl-substituted dithiocarbazic acid H(2)L(3) reacts with perrhenate to give the known nitrido complex [Re(N)Cl(2)(PPh(3))(2)]. Rhenium(V) complexes incorporating the robust eta(2)-hydrazido moiety represent key intermediates helpful for the comprehension of the reaction pathway which generates nitridorhenium(V) species starting from oxo precursors. An essential requirement for the stabilization of such chelated hydrazido-Re(V) units is the triple deprotonation at the hydrazine nitrogens, thereby providing efficient pi-electron circulation in the resulting five-membered ring. The thermal stability of these units is affected by the nature of the anchoring donor, thione sulfur ensuring stronger chelation than nitrogen and oxygen. The eta(2)-hydrazido complexes are characterized by conventional physicochemical techniques, including the X-ray crystal structure determination of 1 and 3.  相似文献   

3.
Air-stable rhenium(V) nitrido complexes are formed when [ReOCl3(PPh3)2], [NBu4][ReOCl4], or [NBu4][ReNCl4] are treated with an excess of silylated phosphoraneiminates of the composition Me3SiNPPh3 or Ph2P(NSiMe3)CH2PPh2 in CH2Cl2. Complexes of the compositions [ReNCl(Ph2PCH2PPh2NH)2]Cl (1), [ReN(OSiMe3)(Ph2PCH2PPh2NH)2]Cl (2) or [ReNCl2(PPh3)2] (3) were isolated and structurally characterized. The latter compound was also produced during a reaction of the rhenium(III) precursor [ReCl3(PPh3)2(CH3CN)] and Me3SiNPPh3. Nitrogen transfer from the phosphorus to the rhenium atoms and the formation of nitrido ligands were observed in all examples. All products of reactions with an excess of the potentially chelating phosphoraneiminate Me3SiNP(Ph2)CH2PPh2 contain neutral Ph2PCH2PPh2NH ligands. The required protons are supplied by a metal-induced decomposition of the solvent dichloromethane. The Re-N(imine) bond lengths (2.055-2.110 A) indicate single bonds, whereas the N-P bond with lengths between 1.596 A and 1.611 A reflect considerable double bond character. An oxorhenium(V) phosphoraneiminato complex, the dimeric compound [ReOCl2(mu-N-Ph2PCH2PPh2N)]2 (4), is formed during the reaction of [NBu4][ReOCl4] with an equivalent amount of Ph2P(NSiMe3)CH2PPh in dry acetonitrile. The blue neutral complex with two bridging phosphoraneiminato units is stable as a solid and in dry solvents. It decomposes in solution, when traces of water are present. The rhenium-nitrogen distances of 2.028(3) and 2.082(3) A are in the typical range of bridging phosphoraneiminates and an almost symmetric bonding mode. Technetium complexes with phosphoraneimine ligands were isolated from reactions of [NBu4][TcOCl4] with Me3SiNPPh3, and [NBu4][TcNCl4] with Me3SiNP(Ph2)CH2PPh2. Nitrogen transfer and the formation of a five-coordinate nitrido species, [TcNCl2(HNPPh3)2] (5), was observed in the case of the oxo precursor, whereas reduction of the technetium(VI) starting material and the formation of the neutral technetium(V) complex [TcNCl2(Ph2PCH2PPh2NH)] (6) or [TcNCl(Ph2PCH2PPh2NH)2]Cl (7) was observed in the latter case. Both technetium complexes are air stable and X-ray structure determinations show bonding modes of the phosphoraneimines similar to those in the rhenium complexes.  相似文献   

4.
Air- and water-stable phenyl complexes with nitridotechnetium(V) cores can be prepared by straightforward procedures. [TcNPh(2)(PPh(3))(2)] is formed by the reaction of [TcNCl(2)(PPh(3))(2)] with PhLi. The analogous N-heterocyclic carbene (NHC) compound [TcNPh(2)(HL(Ph))(2)], where HL(Ph) is 1,3,4-triphenyl-1,2,4-triazol-5-ylidene, is available from (NBu(4))[TcNCl(4)] and HL(Ph) or its methoxo-protected form. The latter compound allows the comparison of different Tc-C bonds within one compound. Surprisingly, the Tc chemistry with such NHCs does not resemble that of corresponding Re complexes, where CH activation and orthometalation dominate.  相似文献   

5.
Depending on experimental conditions and the nature of the hydrazine, the reactions of ReCl3P3 [P = PPh(OEt)2] with RNHNH2 (R = H, CH3, tBu) afford the bis(dinitrogen) [Re(N2)2P4]+ (2+), dinitrogen ReClN2P4 (3), and methyldiazenido [ReCl(CH3N2)(CH3NHNH2)P3]+ (1+) derivatives. In contrast, reactions of ReCl3P3 [P = PPh(OEt)2, PPh2OEt] with arylhydrazines ArNHNH2 (Ar = Ph, p-tolyl) give the aryldiazenido cations [ReCl(ArN2)(ArNHNH2)P3]+ (4+) and [ReCl(ArN2)P4]+ (7+) and the bis(aryldiazenido) cations [Re(ArN2)2P3]+ (5+, 6+). These complexes were characterized spectroscopically (IR; 1H and 31P NMR), and the BPh4 complexes 1, 2, and 7 were characterized crystallographically. The methyldiazenido derivative [ReCl(CH3N2)(CH3NHNH2)(PPh(OEt)2)3][BPh4] (1) crystallizes in space group P1 with a = 15.396(5) A, b = 16.986(5) A, c = 11.560(5) A, alpha = 93.96(5) degrees, beta = 93.99(5) degrees, gamma = 93.09(5) degrees, and Z = 2 and contains a singly bent CH3N2, group bonded to an octahedral central metal. One methylhydrazine ligand, one Cl- trans to the CH3N2, and three PPh(OEt)2 ligands complete the coordination. The complex [Re(N2)2(PPh(OEt)2)4][BPh4] (2) crystallizes in space group Pbaa with a = 23.008(5) A, b = 23.367(5) A, c = 12.863(3) A, and Z = 4. The structure displays octahedral coordination with two end-on N2 ligands in mutually trans positions. [ReCl(PhN2)(PPh(OEt)2)4][BPh4] (7) crystallizes in space group P2(1)/n with a = 19.613(5) A, b = 20.101(5) A, c = 19.918(5) A, beta = 115.12(2) degrees, and Z = 4. The structure shows a singly bent phenyldiazenido group trans to the Cl- ligand in an octahedral environment. The dinitrogen complex ReClN2P4 (3) reacts with CF3SO3CH3 to give the unstable methyldiazenido derivative [ReCl(CH3N2)P4][BPh4]. Reaction of the methylhydrazine complex [ReCl(CH3N2)(CH3NHNH2)P3][BPh4] (1) with Pb(OAc)4 at -30 degrees C results in selective oxidation of the hydrazine, affording the corresponding methyldiazene derivative [ReCl(CH3N=NH)(CH3N2)P3][BPh4] (8). In contrast, treatment with Pb(OAc)4 of the related arylhydrazines [ReCl(ArN2)(ArNHNH2)P3][BPh4] (4) [P = PPh(OEt)2] gives the bis(aryldiazenido) complexes [Re(ArN2)2P3][BPh4] (5). Possible protonation reactions of Br?nsted acids HX with all diazenides, 1, 4, 5, 6, and 8, were investigated and found to proceed only in the cases of the bis(aryldiazenido) complexes 5 and 6, affording, with HCl, the octahedral [ReCl(ArN=NH)(ArN2)P3][BPh4] or [ReCl(Ar(H)NN)(ArN2)P3][BPh4] (10) (Ar = Ph; P = PPh2OEt) derivative.  相似文献   

6.
Reaction of aminophosphinimine [RHN(CH(2))(2)N[double bond, length as m-dash]PPh(3)] (R = H, Et) with Re(2)(CO)(10) provided the NH-functionalized carbene rhenium complex [Re(2)(CNHCH(2)CH(2)NR)(CO)(9)] (3a, R = H, 3b, R = Et). Treatment of 3 with Br(2) provided the mono nuclear [Re(CNHCH(2)CH(2)NR)(CO)(4)Br] (1, R = H, 2, R = Et). However, NH-functionalized carbene complexes 1-3 did not undergo N-alkylation with alkyl halides to yield the N-substituted NHC complexes. The direct ligand substitution of [Re(CO)(5)Br] with a carbene donor was employed to prepare [Re(IMes(2))(CO)(4)Br] (6a, IMes(2) = 1,3-di-mesitylimidazol-2-ylidene; 6b, IMes(2) = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene). Analyses of spectroscopic and crystal data of 6a and 6b show similar corresponding data among these complexes, suggesting the saturated and unsaturated NHCs have similar bonding with Re(I) metal centers. Reduction of 6a and 6b with LiEt(3)BH yielded the corresponding hydrido complexes 7a-b [ReH(CO)(4)(IMes(2))], but not 1 and 2. Ligand substitution of 1, 6a and 6b toward 2,2'-bipyridine (bipy) was investigated. Crystal structures of 1, 3a-b, 6a-b and 7b were determined for characterization and comparison.  相似文献   

7.
The bromocyclopentadienyl complex [(eta5-C5H4Br)Re(CO)3] is converted to racemic [(eta5-C5H4Br)Re(NO)(PPh3)(CH2PPh2)] (1 b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH3)] with nBuLi and I2 gives (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH3)] ((S)-6 c; 84 %), which is converted (Ph3C+ PF6 -, PPh2H, tBuOK) to (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH2PPh2)] ((S)-1 c). Reactions of 1 b and (S)-1 c with Pd[P(tBu)3]2 yield [{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-X)}2] (10; X = b, Br, rac/meso, 88 %; c, I, S,S, 22 %). Addition of PPh3 to 10 b gives [(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(PPh3)(Br)] (11 b; 92 %). Reaction of (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] ((S)-2) and Pd(OAc)(2) (1.5 equiv; toluene, RT) affords the novel Pd3(OAc)4-based palladacycle (S,S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-OAc)2Pd(mu-OAc)2Pd(mu-PPh2CH2)(Ph3P)(ON)Re(eta5-C5H4)] ((S,S)-13; 71-90 %). Addition of LiCl and LiBr yields (S,S)-10 a,b (73 %), and Na(acac-F6) gives (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(acac-F6)] ((S)-16, 72 %). Reaction of (S,S)-10 b and pyridine affords (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(NC5H5)(Br)] ((S)-17 b, 72 %); other Lewis bases yield similar adducts. Reaction of (S)-2 and Pd(OAc)2 (0.5 equiv; benzene, 80 degrees C) gives the spiropalladacycle trans-(S,S)-[{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)}2Pd] (39 %). The crystal structures of (S)-6 c, 11 b, (S,S)- and (R,R)-132 C7H8, (S,S)-10 b, and (S)-17 b aid the preceding assignments. Both 10 b (racemic or S,S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.  相似文献   

8.
Reaction of bis(2-aminoethyl)(3-aminopropyl)amine with C(6)F(6) and K(2)CO(3) in DMSO yields unsymmetrical [(C(6)F(5))HNCH(2)CH(2)](2)NCH(2)CH(2)CH(2)NH(C(6)F(5)) ([N(3)N]H(3)). The tetraamine acts as a tridentate ligand in complexes of the type H[N(3)N]Re(O)X (X = Cl 1, Br 2) prepared by reacting Re(O)X(3)(PPh(3))(2) with [N(3)N]H(3) and an excess of NEt(3) in THF. Addition of 1 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 1 gives the dimeric compound H[N(3)N]ClReOReBrCl[N(3)N]H (3) in quantitative yield that contains a Re(V)[double bond]O[bond]Re(IV) core with uncoordinated aminopropyl groups in each ligand. Addition of 2 equiv of TaCH(CMe(2)Ph)Cl(3)(THF)(2) to 1 leads to the chloro complex [N(3)N]ReCl (4) with all three amido groups coordinated to the metal, whereas by addition of 2 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 2 the dibromo species H[N(3)N]ReBr(2) (5) with one uncoordinated amino group is isolated. Reduction of 4 under an atmosphere of dinitrogen with sodium amalgam gives the dinitrogen complex [N(3)N]Re(N(2)) (6). Single-crystal X-ray structure determinations have been carried out on complexes 1, 3, 5, and 6.  相似文献   

9.
Copper(I) complexes of the tridentate thioether ligands [PhB(CH(2)SCH(3))(3)] (abbreviated PhTt), [PhB(CH(2)SPh)(3)] (PhTt(Ph)), [PhB(CH(2)S(t)()Bu)(3)] (PhTt(t)()(Bu)), and [PhB(CH(2)S(p)()Tol)(3)] (PhTt(p)()(Tol)) and bidentate thioether ligands [Ph(2)B(CH(2)SCH(3))(2)] (Ph(2)Bt), [Et(2)B(CH(2)SCH(3))(2)] (Et(2)Bt), and [Ph(2)B(CH(2)SPh)(2)] (Ph(2)Bt(Ph)) have been prepared and characterized. The solution and solid state structures are highly sensitive to the identity of the borato ligand employed. Ligands possessing the smaller (methylthio)methyl donors, [PhTt] and [Ph(2)Bt], yielded tetrameric species, [(PhTt)Cu](4) and [(Ph(2)Bt)Cu](4), containing both terminal and bridging thioether ligation. The ligands containing the larger (arylthio)methyl groups, [PhTt(Ph)] and [PhTt(p)()(Tol)], form monomeric [PhTt(Ar)]Cu(NCCH(3)) in solution and one-dimensional extended structures in the solid state. Each complex type reacted cleanly with acetonitrile, pyridine, or triphenylphosphine generating the corresponding four-coordinate monomer, of which [PhTt(Ph)]Cu(PPh(3)), [PhTt(p)()(Tol)]Cu(PPh(3)), and [Et(2)Bt]Cu(PPh(3))(2) have been structurally characterized.  相似文献   

10.
The broad applicability of the title reaction is established through studies of neutral and charged, coordinatively saturated and unsaturated, octahedral and square planar rhenium, platinum, rhodium, and tungsten complexes with cyclopentadienyl, phosphine, and thioether ligands which contain terminal olefins. Grubbs' catalyst, [Ru(=CHPh)(PCy3)2(Cl)2], is used at 2-9 mol% levels (0.0095-0.00042 M, CH2-Cl2). Key data are as follows: [(eta5-C5H4(CH2)6CH=CH2)Re(NO)(PPh3)-(CH3)], intermolecular metathesis (95 %); [(eta5-C5H5)Re(NO)(PPh3)(E(CH2CH=CH2)2)]+ TfO (E=S, PMe, PPh), formation of five-membered heterocycles (96-64%; crystal structure E = PMe); [(eta5-C5Me5)Re(NO)(PPh((CH2)6CH=CH2)2)(L)]n+ nBF4-(L/n = CO/1, Cl/0), intramolecular macrocyclization (94-89%; crystal structure L= Cl); fac-[(CO)3Re(Br)(PPh2(CH2)6CH=CH2)2] and cis-[(Cl)2Pt(PPh2(CH2)6CH=CH2)2], intramolecular macrocyclizations (80-71%; crystal structures of each and a hydrogenation product); cis-[(Cl)2Pt(S(R)(CH2)6CH= CH2)2], intra-/intermolecular macrocyclization (R=Et, 55%/24%; tBu, 72%/ <4%); trans-[(Cl)(L)M(PPh2(CH2)6CH=CH2)2] (M/L = Rh/CO, Pt/C6F5) intramolecular macrocyclization (90-83%; crystal structure of hydrogenation product, M=Pt); fac-[W(CO)3(PPh((CH2)6CH=CH2)2)3], intramolecular trimacrocyclization (83 %) to a complex mixture of triphosphine, diphosphine/ monophosphine, and tris(monophosphine) complexes, from which two isomers of the first type are crystallized. The macrocycle conformations, and basis for the high yields, are analyzed.  相似文献   

11.
Reactions of Re(V), tetradentate Schiff base complexes with tertiary phosphines have previously yielded both rearranged Re(V) and reduced Re(III) complexes. To further understand this chemistry, the rigid diiminediphenol (N(2)O(2)) Schiff base ligand sal(2)phen (N,N'-o-phenylenebis(salicylaldimine)) was reacted with (n-Bu(4)N)[ReOCl(4)] to yield trans-[ReOCl(sal(2)phen)] (1). On reaction with triphenylphosphine (PPh(3)), a rearranged Re(V) product cis-[ReO(PPh(3))(sal(2)phen*)]PF(6) (2), in which one of the imines was reduced to an amine during the reaction, and the reduced Re(III) products trans-[ReCl(PPh(3))(sal(2)phen)] (4) and trans-[Re(PPh(3))(2)(sal(2)phen)](+) (5) were isolated. Reaction of sal(2)phen with [ReCl(3)(PPh(3))(2)(CH(3)CN)] resulted in the isolation of [ReCl(2)(PPh(3))(2)(salphen)] (3). The compounds were characterized using standard spectroscopic methods, elemental analyses and single crystal X-ray crystallography.  相似文献   

12.
Treatment of alpha,omega-dithiols HS(CH(2))(n)()SH, n = 4 or 5, with tris[(triphenylphosphine)aurio]oxonium tetrafluoroborate affords the corresponding S,S,S',S'-tetrakis[(triphenylphosphine)aurio]-alpha,omega-alkanediylbis(sulfonium) bis(tetrafluoroborates) of the type {[(Ph(3)P)Au](2)S(CH(2))(n)()S[Au(PPh(3))](2)}(2+)2BF(4)(-). The crystal structure of the species with n = 5 has been determined by single crystal X-ray diffraction studies. In the lattice the unfolded dications are linked into chains through short double Au-Au contacts between the terminal bifurcated diauriosulfonium centers. The analogous reactions with (racemic) 1,2-dithioglycerol and 1,2,3-trithioglycerol also give tri- and tetranuclear complexes with a varying distribution of the metal atoms over the chalcogen(ium) centers. As again demonstrated in a single crystal X-ray diffraction study, the dications {HOCH(2)HCS[(Ph(3)P)Au](2)CH(2)S[Au(PPh(3))](2)}(2+) of the dithioglycerol compound form only dimers through auriophilicity-determined pairing of the bifurcated ends, while the open ends are shielded by the dangling hydroxyl group. The trinuclear complex of 1,2-dithioglycerol is fluxional in solution; the crystal structure has not been determined but is expected to be similar to that derived for the analogous dithioglycol complex. The tetranuclear, trithioglycerol-based dications of {[(Ph(3)P)Au]SCH(2)CHS[Au(PPh(3))]CH(2)S[Au(PPh(3))](2)}(+)BF(4)(-) are isolated in the lattice and feature an unsymmetrical complexation, which is an extension of the structure of the trinuclear dithioglycol analogue {(CH(2)S)(2)[Au(PPh(3))](3)}(+) with its strong intramolecular Au-Au contacts. A similar structure is proposed for the monocation {CH(2)(CH(2)S)(2)[Au(PPh(3))](3)}(+) obtained from propane-1,3-dithiol. The structures of these cations are also fluxional in solution, however, as shown by variable-temperature NMR studies.  相似文献   

13.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

14.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

15.
A new hexanuclear rhenium cluster encapsulated by six iridium complexes, [Re6Te8(CN)6][(Ir(CO)(PPh3)2)6](OTf)2 (3), which is effective in catalyzing the hydrogenation of p-CH3C6H4C[triple bond]CH to p-CH3C6H4CH=CH2 has been prepared.  相似文献   

16.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

17.
A new route to low-valent technetium complexes containing multiple acetonitrile ligands has been developed. The reduction of TcCl(4)(PPh(3))(2) with zinc metal dust in acetonitrile results in the formation of [Tc(CH(3)CN)(4)(PPh(3))(2)][Zn(2)Cl(6)](1/2). The hexafluorophosphate salt of the analogous Tc(II) cation can be prepared via chemical oxidation of the Tc(I) species, and the Tc(I) cation can be regenerated via chemical reduction. The compounds have been characterized in the solid state via single-crystal X-ray crystallography, and in solution via a combination of spectroscopic techniques and cyclic voltammetry. The structural parameters found in the two complexes are similar to each other; however, the difference in oxidation state is reflected, as expected, in the spectroscopic results. The electrochemical data, obtained from cyclic voltammograms of Tc(CH(3)CN)(4)(PPh(3))(2)](PF(6))(n)() (n = 1,2), mirror the synthetic results in that both compounds possess a reversible redox couple at -0.55 V versus ferrocene, which has been assigned to the Tc(II)/Tc(I) couple.  相似文献   

18.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

19.
Treatment of Mn(2)(CO)(10) with 3,4-toluenedithiol and 1,2-ethanedithiol in the presence of Me(3)NO.2H(2)O in CH(2)Cl(2) at room temperature afforded the dinuclear complexes Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (1), and Mn(2)(CO)(6)(mu-eta(4)-SCH(2)CH(2)S-SCH(2)CH(2)S) (2), respectively. Similar reactions of Re(2)(CO)(10) with 3,4-toluenedithiol, 1,2-benzenedithiol, and 1,2-ethanedithiol yielded the dirhenium complexes Re(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (3), Re(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S) (4), and Re(2)(CO)(6)(SCH(2)CH(2)S-SCH(2)CH(2)S) (5), respectively. In contrast, treatment of Mn(2)(CO)(10) with 1,3-propanedithiol afforded the trimanganese compound Mn(3)(CO)(6)(mu-eta(2)-SCH(2)CH(2)CH(2)S)(3) (6), whereas Re(2)(CO)(10) gave only intractable materials. The molecular structures of 1, 3, and 6 have been determined by single-crystal X-ray diffraction studies. The dimanganese and dirhenium carbonyl compounds 1-5contain a binucleating disulfide ligand, formed by interligand disulfide bond formation between two dithiolate ligands identical in structure to that of the previously reported dimanganese complex Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S). Complex 6, on the other hand, forms a unique example of a mixed-valence trimangenese carbonyl compound containing three bridging 1,3-propanedithiolate ligands. The solution properties of 6 have been investigated by UV-vis and EPR spectroscopies as well as electrochemical techniques.  相似文献   

20.
The tris(imido)methylrhenium complex CH3Re(NAd)3 (1a, Ad = 1-adamantyl) reacts with H2O to give CH3Re(NAd)2O (2a) and AdNH2. The resulting di(imido)oxo species can further react with another molecule of H2O to generate CH3Re(NAd)O2 (3a). The kinetics of these reactions have been studied by means of 1H NMR and UV-vis spectroscopies. The second-order rate constant for the reaction of 1a with H2O at 298 K in C6H6 is 3.3 L mol-1 s-1, which is much larger than the value 1 x 10(-4) L mol-1 s-1 obtained for the reaction between CH3Re(NAr)3 (1b, Ar = 2,6-diisopropylphenyl) and H2O in CH3CN at 313 K. Both 1a and 1b react with H2S to produce the rhenium(VII) sulfide, (CH3Re(NR)2)2(mu-S)2 (4a, R = Ad; 4b, R = Ar), with second-order rate constants of 17 and 1.6 x 10(-4) L mol-1 s-1 in C6H6 and CH3CN, respectively. Complex 4b has been structurally characterized. The crystal data are as follows: space group C2/c, a = 30.4831 (19) A, b = 10.9766 (7) A, c = 18.1645 (11) A, beta = 108.268(1) degrees, V = 5771.5 (6) A3, Z = 4. The reaction between CH3Re(NAr)2O (2b) and H2S also yields the dinuclear compound 4b. Unlike 1b, 1a reacts with aniline derivatives to give mixed imido rhenium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号