首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate(SDBS) on electron transfer(ET) reaction between ferricyanide aqueous solution and decamethylferrocene(DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method.The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase.However,the rate constant of electron transfer(k_(et)) i...  相似文献   

2.
The formation conditions and characteristics of a liquid/liquid optical waveguide (LLW) were studied using a two-phase sheath flow, where the inner organic phase flow acted as the core and the outer aqueous flow acted as the clad. In immiscible solvent systems, i.e., toluene/water and diethyl ether/water systems, the LLWs were formed in the range of higher than ca. 600 of the Reynolds number (Re), where the linear velocity of the organic solvent was much higher than that of the aqueous solution. On the other hand, in a miscible solvent system, i.e., a tetrahydrofuran/water system, a stable LLW was formed in the range of a much lower Re than in immiscible systems. Moreover, the molecules at the toluene/water interface of the LLW were observed with both fluorescence and absorbance measurement systems. In particular, the change in the fluorescence spectrum of 1-anilino-8-naphthalenesulfonate (ANS) at the interface within 1 ms was observed by this method, indicating the usefulness of the LLW for a fast kinetic study of a liquid/liquid interface.  相似文献   

3.
用薄层法研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对硝基苯/水界面电子转移的影响. 实验结果表明, 随着水相中十二烷基苯磺酸钠浓度的增加, 有机相中十甲基二茂铁(DMFc)和水相中Fe(CN)63-发生的界面双分子反应的阴极平台电流呈现递减趋势, 但是界面双分子反应速率常数却呈递增趋势. 这是由于阴离子表面活性剂十二烷基苯磺酸钠在硝基苯/水界面形成了修饰层, 影响了界面双电层结构. SDBS在液/液界面的吸附为Langmuir吸附.  相似文献   

4.
A new cost-effective amperometric proton selective sensor utilizing a single microhole interface between two immiscible electrolyte solutions (ITIES) is developed. The sensing methodology is based on measuring currents associated with proton transfer across the interface assisted by a proton selective ionophore. The ellipse shaped micro-interface was first fabricated by simple mechanical punching with a sharp needle on a thin PVC film (12 μm thick) commercially available as a food wrapping material. The microhole was then filled up with a gellified polyvinylchloride (PVC)-2-nitrophenyloctylether (NPOE) to create a single microhole liquid/liquid interface. Direct ion transfer reactions across the polarized interface serving as ion sensing platforms were studied using cyclic voltammetry. In order to enhance the selectivity of proton sensing, a proton selective ionophore, octadecyl isonicotinate (ETH1778), was incorporated into the organic gel layer and their electrochemical sensing characteristics were investigated using cyclic voltammetry and differential pulse stripping voltammetry. As an example, we employed the proton selective sensor for the determination of glucose concentrations. The detection scheme involves two steps: (i) protons are first generated by the oxidation of glucose with glucose oxidase in the aqueous phase; and (ii) the current associated with the proton transfer across the interface is then measured for correlating the concentration of glucose.  相似文献   

5.
An electron transfer reaction between ascorbate in an aqueous solution and oxidizing agents in an organic solution immiscible with water has been studied for the first time by polarography for charge transfer at the interface between two immiscible electrolyte solutions. A reversible electron transfer polarogram at the aqueous|organic solution interface could be observed when teterachlorobenzoquinone, dibromobenzoquinone and Meldola's Blue were used as oxidizing agents in the organic solution. The oxidation reaction of ascorbate at the aqueous|organic interface was discussed comparing with the reactions at the ordinary electrodes and in homogeneous solutions. The half-wave potentials of electron transfer polarograms at the aqueous|nitrobenzene interface were applied to evaluate the formal redox potential of ascorbate/ascorbate free radical.  相似文献   

6.
The form of liquid/liquid interface is flexible and it cannot be fixed at a spatial position. Also the interface is prevented from any physical contact by the organic phase and aqueous phase. In addition, analytical methods operated in vacuo cannot be applied. These restrictions depressed the development of liquid/liquid interfacial chemistry. However, the modification of liquid/liquid interfacial form and original analytical methods have been invented interdependently. The present review classifies the forms of liquid/liquid interface first, and it arrays the related analytical methods with brief explanations. It dominantly deals with recent reports of analytical methodologies, which were published in 2001-2004, on equilibrium, kinetics, and dynamics of substances at liquid/liquid interface, but it also includes historically important studies.  相似文献   

7.
A simple preconcentration and clean-up liquid-liquid-liquid microextraction of aromatic amines is described in this paper. The compounds were extracted from 2.0 ml aqueous samples (donor phase) into an organic phase, layered on the donor phase, and then back extracted to a microdrop of aqueous receiving phase, suspended in the organic phase. After extraction, the microdrop was injected into the HPLC system directly for analysis. Optimal conditions of the extraction were donor phase (a1): 2 ml of water sample adjusted to pH 13 with NaOH-NaCl; organic phase (o), 150 microl ethyl acetate; and receiving phase (a2) of 2 microl aqueous solution at pH 2.1. The a1-->o extraction time was 15 min and for o-->a2, 30 s. 18-Crown-6 ether, which can complex with amine, was added to the aqueous receiving phase to improve the extraction performance. Enrichment factors ranged from 218 (for 4-nitroaniline) to 378 (for 4-chloro-2-aniline). The calibration curve for these anilines was linear within the range 2.5 ng/ml-2.5 microg/ml (r2=0.998). Detection limits ranged from 0.85 to 1.80 ng/mi (at S/N=3). This procedure can be a selective preconcentration method for aromatic amines present in water samples.  相似文献   

8.
Periodic Marangoni convective instability has been observed in a biphasic system during the mass transfer of cetyltrimethylammonium bromide (CTAB) from an aqueous to a dichloromethane organic phase. Visualization of the convective fluxes was possible thanks to the CTAB crystals that are formed in the aqueous phase at a temperature below the Krafft point. Surface tension and electrical potential oscillations have been shown to be correlated with the fluid motion. Surface tension measurements, representative of the adsorption state, showed fast adsorption during the convective stage, followed by a slower desorption process in the quiet stage. To account for the electrical potential data, two components need to be taken into account. In the quiet stage, the signal was comparable to surface tension, and the main contribution would result from the electrical double layer formed at the interface by charged surfactants. In the convective stage, the electrical potential was furthermore related to the velocity of the fluid in the aqueous layer. Perturbations of the charge distribution in the Gouy-Chapman layer due to tangential flows could be at the origin of the phenomenon.  相似文献   

9.
The study presents first experimental results of the transfer of magnetite nanoparticles from an aqueous to a second non-miscible non-aqueous liquid phase. The transfer is based on the adsorption of macromolecular surfactants onto the particle surface at the liquid–liquid interface. For a successful direct phase transfer, it is essential to have cations, like ammonium ions, present in the aqueous phase as well as a threshold concentration of surfactant in the organic liquid phase. While penetrating the liquid–liquid interface, the particles are covered with the surfactant and therefore a partial de-agglomeration is initiated. Based on literature and experimental data a mechanism of surfactant adsorption is proposed. The competing adsorption of the surfactant molecules at the liquid–liquid interface leads to the formation of emulsions and therefore to a hindrance for particles passing the interface. Nevertheless a high efficiency of 100% yield can be reached using optimized process parameters for the phase transfer process.  相似文献   

10.
The Maillard reaction is controlled by temperature, pH, reactant nature (sugars and amino acids), and water activity. We carried out reactions between glucose and leucine in U‐type nonionic microemulsions to obtain regioselectivity and control reaction rates. Reactants were oriented at the interface and water activity was adjusted using blends of surfactant and propylene glycol (PG). U‐type microemulsions, previously studied by us, served as microreactors for the Maillard reaction. The reactions in the microemulsion media were slower than those carried out in aqueous solution and formed unique aroma compounds. Reaction rates increased when using systems richer in water, as the water activity was enhanced. The surfactant plays a key role in determining water activity and reagent reactivity in all the microemulsions. The presence of PG slows the reaction, mainly when it resides at the interface, facilitating the formation of a bicontinuous structure. Phase transitions within the U‐type microemulsions were determined by viscosity and SD‐NMR and were correlated to the interfacial presence of the reactants and their reactivity.  相似文献   

11.
Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (μITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of μITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the μITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.  相似文献   

12.
Sherburn A  Plattt M  Arrigan DW  Boag NM  Dryfe RA 《The Analyst》2003,128(9):1187-1192
Transfer of silver ions across the water/1,2-dichloroethane interface was studied by cyclic voltammetry (CV). In the absence of added neutral ionophore, Ag+ transferred across the interface when the organic phase contained either tetraphenylborate or tetrakis(4-chloro)phenylborate anions, but this transfer was not possible in the presence of organic phase hexafluorophosphate or perchlorate anions. The ion transfer processes observed were independent of the nature of the organic phase cation. The CV in the presence of tetraphenylborate exhibited a shape consistent with an ion transfer followed by chemical reaction; the rate constant for the following chemical reaction was 0.016 s(-1). In the presence of tetrakis(4-chloro)phenylborate, a return peak equivalent in magnitude to the forward peak was observed, indicative of a simple ion transfer reaction uncomplicated by accompanying chemical reactions. The selectivity of the transfer was assessed with respect to other metal cations: no transfers for copper, cadmium, lead, bismuth, cobalt, nickel, palladium or zinc were observed. The selectivity of the transfer suggests this can form the basis of a selective voltammetric methodology for the determination of silver ions.  相似文献   

13.
Gu  Yaxiong  Chen  Ye  Dong  Yifan  Liu  Junjie  Zhang  Xianhao  Li  Mingzhi  Shao  Yuanhua 《中国科学:化学(英文版)》2020,63(3):411-418
The study of microscopic structure of a liquid/liquid interface is of fundamental importance due to its close relation to the thermodynamics and kinetics of interfacial charge transfer reactions.In this article,the microscopic structure of a non-polarizable water/nitrobenzene(W/NB) interface was evaluated by scanning ion conductance microscope(SICM).Using SICM with a nanometer-sized quartz pipette filled with an electrolyte solution as the probe,the thickness of this type of W/NB interface could be measured at sub-nanometer scale,based on the continuous change of ionic current from one phase to another one.The effects for thicknesses of the non-polarizable W/NB interfaces with different electrolyte concentrations,the Galvani potentials at the interface and the applied potentials on the probe were measured and systematically analyzed.Both experimental setups,that is an organic phase up and an aqueous down,and a reverse version,were employed to acquire the approach curves.These data were compared with those of an ideal polarizable interface under the similar experimental conditions,and several characteristics of non-polarizable interfaces were found.The thickness of a non-polarizable interface increases with the decrease of electrolyte concentration and the increase of applied potential,which is similar to the situation of a polarizable liquid/liquid interface.We also find that the Galvani potential across a non-polarizable interface can also influence the interfacial thickness,this phenomenon is difficult to observe when using polarizable interface.Most importantly,by the comparison of two kinds of liquid/liquid interfaces,we experimentally proved that much more excess ions are gathered in the space charge layer of non-polarizable interfaces than in that of polarizable interfaces.These results are consistent with the predictions of molecular dynamic simulations and X-ray reflectivity measurements.  相似文献   

14.
A thioether-mediated copper transport with the aid of redox reaction was studied in a polymer-supported liquid membrane and in a liquid surfactant membrane. A photochemical generation of the redox potential led to a photo-assisted copper separation and concentration system. Tetradentate thioethers 1 and 2 (L) selectively extracted copper ion into organic solution in the presence of a reducing agent, and served as a copper-selective carrier in a liquid membrane system. In the polymer-supported organic liquid membrane system, the thioether was dissolved in the membrane phase which separated the two aqueous solutions of different redox potentials. The copper ion was extracted into the membrane phase by formation of the [CuIL]+ ? X? type complex on the reducing solution interface and permeated through the membrane toward the oxidizing solution interface, where the complex was decomposed to release the copper(II) species into the oxidizing aqueous solution. The nature of the system was studied in detail under various operational conditions (redox agents, pairing anion X?, coexisting metals, etc.) and compared with that of the previously reported Bathocuproine-mediated system. The transport system was extended to the water-in-oil-in-water emulsion system (liquid surfactant membrane), and the selective concentration of copper ion from dilute external aqueous solutions into inner stripping solutions was achieved. Photo-induced redox reactions, triethanolamine—acriflavine—methyl viologen—hv and glucose—titanium oxide—hv, were successfully coupled to the systems, leading to a photo-assisted copper transport in the polymer-supported liquid membrane as well as in the liquid surfactant membrane. Tentative explanations were given on the nature of the membrane transport reactions.  相似文献   

15.
The oscillatory behavior of a nitromethane based liquid membrane oscillator was investigated to contribute to the oscillation mechanism at the molecular level. At the beginning the system contains three phases: the aqueous donor phase in which the cationic surfactant, hexadecyltrimethylammonium bromide and ethanol are present and the aqueous acceptor phase made up by sucrose solution separated by the liquid membrane containing a constant amount of picric acid. During experiment a new phase x is created between the liquid membrane and acceptor phase. It was established that the oscillations take place at the membrane/phase x and the phase x/acceptor phase interfaces. Five basic regions can be distinguished in the oscillation pattern. The molecular events provoking the oscillations of electric potential difference between the two aqueous phases involve essentially the diffusion of hexadecyltrimethylammonium bromide and ion pairs formed by the cation of the surfactant and the picrate anion to the vicinity of the membrane/phase x interface, sudden adsorption of these ion pairs at this interface in noncatalytic and autocatalytic steps, desorption of ion pairs from the membrane/phase x interface into phase x, diffusion of ion pairs to the vicinity of phase x/acceptor phase interface, and sudden adsorption at this interface followed by desorption to the aqueous acceptor phase. It is shown by numerical simulations that the proposed mechanism may account for the observed oscillations and for the species distribution throughout the system as found experimentally. This four-phase system behaves like two coupled oscillators.  相似文献   

16.
Several approaches to the determination of selenomethionine, selenocystine, selenite and selenate by high-performance liquid chromatography with online detection by atomic absorption spectrometry are described. The N?2,4-dinitrophenyl derivatives of selenomethionine, selenoethionine, selenocystine and phenylmercury(II) cystineselenoate were recovered from aqueous solution, separated on a Nucleosil 5-NO2 reversed-phase HPLC column with a methanolic mobile phase containing acetic acid and triethylamine, and detected with a quartz thermochemical hydride-generating interface–atomic absorption spectrometry (AA) system. The restriction of having to perform chromatography with an organic mobile phase (to support the combusion process) was overcome with a new interface design capable of operation with either organic or aqueous HPLC mobile phases. Using aqueous acetic acid (0.015% v/v) containing 0.1% (w/v) ammonium acetate delivered at 0.5cm3 min?1, selenate, selenite, selenomethionine, selenocystine and selenoethionine were separated virtually to baseline on a cyanopropyl-bonded phase HPLC column. Other selenium compounds which were investigated included methane seleninic and methane selenonic acids as well as the crude oxidation product mixtures resulting from the treatment of selenomethionine and selenocystine with hydrogen peroxide. A procedure for extracting selenate, selenite, selenomethionine, selenocystine and selenoethionine from spiked water or ground feed supplement into liquefied phenol resulted in acceptable recoveries for the latter four analytes but was unacceptably low for selenate.  相似文献   

17.
An extraction experiment of penicillin G was performed in an emulsion liquid membrane system in which only ECA 4360J exists in the organic membrane phase without a predominant carrier, Amberlite LA-2, used in our previous works and it functions as a carrier as well as a surfactant. A permeation model for the present system has been developed as a primary study to examine the transport mechanism of penicillin G in the previous batch and continuous systems with two carriers of Amberlite LA-2 and ECA 4360J. The model takes into account the mass transfer in the external aqueous film, the extraction reaction between penicillin G and ECA 4360J at the external interface, the diffusion of penicillin G in the emulsion phase, the stripping reaction at the internal interface and the pH change of internal aqueous solution containing Na2CO3 with penicillin G transported into the internal phase. The experimental data were well fitted with the present model. Also, an expression for the reaction of penicillin G with ECA 4360J was obtained through a series of equilibrium measurements in liquid–liquid extraction system.  相似文献   

18.
A general physical model of a typical batch extraction system employing an emulsion liquid membrane process for the extraction of silver has been developed. The model takes into account the extraction reaction between the silver ion and the carrier molecules at the external interface, the diffusion of the complex in the membrane phase, the stripping reaction at the internal interface and the reaction of silver ion with the reagent, HCL, in the internal phase to yield silver chloride incapable of permeating through the membrane phase. In addition, the leakage of the internal aqueous phase to the external aqueous phase due to membrane breakage has been incorporated in this model. The batch extraction of silver using D2EHPA as a carrier has been carried out under various experimental conditions. The experimental data can be well explained by the present model.  相似文献   

19.
Two-photon excitation fluorescence microscopy was combined with the two-phase microflow system in order to measure the fast interfacial reaction rate at liquid/liquid interfaces. The lactone cleavage kinetics of octadecylrhodamine B (C(18)RB) at the toluene/water and heptane/water interfaces was studied by this new method. The organic solution containing the nonfluorescent lactone of C(18)RB was made to flow as an inner flow with an aqueous outer sheath flow. The diameter of the inner flow was <20 microm. A focused fundamental beam of a Ti:sapphire pulse laser of 780 nm was irradiated to the interface, and emitted fluorescence from the fluorescent product was detected by a charge-coupled device (CCD) camera or a streakscope. The increase in the concentration of the fluorescent form of C(18)RB was measured along the interface of the inner flow of the toluene/water and heptane/water systems for 80 micros just after the contact of two phases. The analysis made by the time-dependent Langmuir adsorption model with the aid of the digital simulation method gave the cleavage reaction rate constants of the lactone form of C(18)RB at the liquid/liquid interfaces.  相似文献   

20.
Oleate-stabilized silver colloids of 5-nm-diameter were adsorbed to a toluene/water interface, and surface enhanced Raman scattering (SERS) spectra from these colloids were measured under the total internal reflection (TIR) condition. From the observed spectra, we examined the states of oleate ions and toluene molecules on silver colloids at the liquid/liquid interfacial region. The TIR-SERS spectra of oleate ions showed stronger peaks of the carboxylate group and the ethylene group than those of alkyl chains. From these results, it was found that the oleate ions were adsorbed on the silver surface in two different ways at the liquid/liquid interface; the carboxylate group adsorbed in the organic phase side, while the ethylene group adsorbed in the aqueous phase side. The shifts of the toluene in the interfacial SERS spectra were identical to those of bulk toluene, though the relative intensities among the peaks were not same. This result suggested that the toluene was adsorbed with a weak interaction, but was significantly enhanced by the local electromagnetic field at the colloid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号