首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu C  An J  Noll BC  Schulz CE  Scheidt WR 《Inorganic chemistry》2006,45(10):4177-4185
The preparation and characterization of two new five-coordinate, imidazole-ligated, high-spin iron(II) octaethylporphyrinates is described. [Fe(OEP)(1,2-Me2Im)] and [Fe(OEP)(2-MeHIm)] have been characterized by X-ray structure determinations and temperature-dependent M?ssbauer spectroscopy in zero and applied magnetic fields. The distinction between imidazole-ligated and other ligands in high-spin iron(II) porphyrinates, noted for a series of tetraarylporphyrinate derivatives (Hu, C.; Roth, A.; Ellison, M. K.; An, J.; Ellis, C. M.; Schiltz, C. E.; Scheidt, W. R. J. Am. Chem. Soc. 2005, 127, 5675), is seen here as well. The sign of the quadrupole-splitting constant is again negative, which is unique to the imidazole-ligated derivatives and suggests a distinct electronic structure. The derivatives again display a remarkable temperature dependence in the quadrupole splitting, which is also seen for deoxymyoglobin and -hemoglobin. Structural features for the two new derivatives are similar to those seen earlier, although the core conformations show somewhat more doming character.  相似文献   

2.
The synthesis, structural, and spectroscopic characterization of (nitrosyl)iron(III) porphyrinate complexes designed to have strongly nonplanar porphyrin core conformations is reported. The species have a nitrogen-donor axial ligand trans to the nitrosyl ligand and display planar as well as highly nonplanar porphyrin core conformations. The systems were designed to test the idea, expressly discussed for the heme protein nitrophorin (Roberts, et al. Biochemistry 2001, 40, 11327), that porphyrin core distortions could lead to an unexpected, bent geometry for the FeNO group. For [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl (H(2)OETPP = octaethyltetraphenylporphyrin), the porphyrin core is found to be severely saddled. However, this distortion has little or no effect on the geometric parameters of the coordination group: Fe-N(p) = 1.990(9) A, Fe-N(NO) = 1.650(2) A, Fe-N(L) = 1.983(2) A, and Fe-N-O = 177.0(3) degrees. For the complex [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2) (H(2)OEP = octaethylporphyrin), there are two independent molecules in the asymmetric unit. The cation denoted [Fe(OEP)(2-MeHIm)(NO)](+)(pla) has a close-to-planar porphyrin core. For this cation, Fe-N(p) = 2.014(8) A, Fe-N(NO) = 1.649(2) A, Fe-N(L) = 2.053(2) A, and Fe-N-O = 175.6(2) degrees. The second cation, [Fe(OEP)(2-MeHIm)(NO)](+)(ruf), has a ruffled core: Fe-N(p) = 2.003(7) A, Fe-N(NO) = 1.648(2) A, Fe-N(L) = 2.032(2) A, and Fe-N-O = 177.4(2) degrees. Thus, there is no effect on the coordination group geometry caused by either type of nonplanar core deformation; it is unlikely that a protein engendered core deformation would cause FeNO bending either. The solid-state nitrosyl stretching frequencies of 1917 cm(-)(1) for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) and 1871 cm(-)(1) for [Fe(OETPP)(1-MeIm)(NO)]ClO(4) are well within the range seen for linear Fe-N-O groups. M?ssbauer data for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) confirm that the ground state is diamagnetic. In addition, the quadrupole splitting value of 1.88 mm/s and isomer shift (0.05 mm/s) at 4.2 K are similar to other (nitrosyl)iron(III) porphyrin complexes with linear Fe-N-O groups. Crystal data: [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl, monoclinic, space group P2(1)/c, Z = 4, with a = 12.9829(6) A, b = 36.305(2) A, c = 14.0126(6) A, beta = 108.087(1) degrees; [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2), triclinic, space group Ponemacr;, Z = 4, with a = 14.062(2) A, b = 16.175(3) A, c = 19.948(3) A, alpha = 69.427(3) degrees, beta = 71.504(3) degrees, gamma = 89.054(3) degrees.  相似文献   

3.
The effect of a sixth ligand in a series of low-spin thiocarbonyl-ligated iron(II)octaethylporphyrinates has been investigated. Six-coordinate complexes have been synthesized and characterized by M?ssbauer and infrared spectroscopy and single-crystal X-ray structure determinations. The results are compared with the five-coordinate parent complex. The crystal structures of [Fe(OEP)(CS)(1-MeIm)] and [Fe(OEP)(CS)(Py)] are reported and discussed. The 1-methylimidazole and pyridine derivatives exhibit Fe-C(CS) bond distances of 1.703(4) and 1.706(2) A that are significantly longer than the 1.662(3) A reported for five-coordinate [Fe(OEP)(CS)] (Scheidt, W. R.; Geiger, D. K. Inorg. Chem. 1982, 21, 1208). The trans Fe-N(ligand) distances of 2.112(3) and 2.1550(15) A observed for the 1-methylimidazole and pyridine complex are approximately 0.13 A longer than those observed for analogous bis-ligated complexes and are consistent with a significant structural trans effect for the CS ligand. M?ssbauer investigations carried out for five- and six-coordinate thiocarbonyl derivatives with several different sixth axial ligands reveal interesting features. All derivatives exhibit very small isomer shift values, consistent with a very strong interaction between iron and CS. The five-coordinate derivative has delta(Fe) = 0.08 mm/s, and the six-coordinate complexes exhibit delta(Fe) = 0.14 to 0.19 mm/s at 4.2 K. The five-coordinate complex shows a large quadrupole splitting (DeltaE(q) = 1.93 mm/s at 4.2 K) which is reduced on coordination of the sixth ligand (DeltaE(q) = 0.42-0.80 mm/s at 4.2 K). Addition of a sixth ligand also leads to a small decrease in the value of nu(CS). Correlations in structural, IR, and M?ssbauer results suggest that the sixth ligand effect is primarily induced by changes in sigma-bonding. The structure of [Fe(OEP)(CS)(CH(3)OH)] is briefly reported. Crystal data: [Fe(OEP)(CS)(1-MeIm)] crystallizes in the monoclinic system, space group P2(1)/n, Z = 4, a = 9.5906(5) A, b = 16.704(4) A, c = 23.1417(6) A, beta = 100.453(7) degrees. [Fe(OEP)(CS)(Py)] crystallizes in the triclinic system, space group P1, Z = 5, a = 13.9073(6) A, b = 16.2624(7) A, c = 22.0709(9) A, alpha = 70.586(1) degrees, beta = 77.242(1) degrees, gamma = 77.959(1) degrees. [Fe(OEP)(CS)(CH(3)OH)] crystallizes in the triclinic system, space group P1, Z = 1, a = 9.0599(5) A, b = 9.4389(5) A, c = 11.0676(6) A, alpha = 90.261(1) degrees, beta = 100.362(1) degrees, gamma = 114.664(1) degrees.  相似文献   

4.
The synthesis and crystallographic characterization of the five-coordinate iron(III) porphyrinate complex [Fe(OEP)(NO)]ClO4 are reported. This [FeNO]6 complex has a nearly linear Fe-N-O group (angle = 173.19(13) degrees) with a small off-axis tilt of the Fe-N(NO) vector from the heme normal (angle = 4.6 degrees); the Fe-N(NO) distance is 1.6528(13) A and the iron is displaced 0.32 A out-of-plane. The complex forms a tight cofacial pi-pi dimer in the solid state. M?ssbauer spectra for this derivative as well as for a related crystalline form are measured both in zero applied magnetic field and in a 7 T applied field. Fits to the measurements made in applied magnetic field demonstrate that both crystalline forms of [Fe(OEP)(NO)]ClO4 have a diamagnetic ground state at 4.2 K. The observed isomer shifts (delta = 0.22-0.24 mm/s) are smaller than those typically observed for low-spin iron(III) porphyrinates. Analogous M?ssbauer measurements are also obtained for a six-coordinate derivative, [Fe(OEP)(Iz)(NO)]ClO4 (Iz = indazole). The observed isomer shift for this species is smaller still (delta = 0.02 mm/s). All derivatives show a strong temperature dependence of the isomer shift. The data emphasize the strongly covalent nature of the FeNO group. The M?ssbauer isomer shifts suggest formal oxidation states greater than +3 for iron, but the NO stretching frequencies are not consistent with such a large charge transfer to NO. Differences in the observed nitrosyl stretching frequencies of the two crystalline forms of [Fe(OEP)(NO)]ClO4 are discussed.  相似文献   

5.
The six-coordinate nitrosyl sigma-bonded aryl(iron) and -(ruthenium) porphyrin complexes (OEP)Fe(NO)(p-C(6)H(4)F) and (OEP)Ru(NO)(p-C(6)H(4)F) (OEP = octaethylporphyrinato dianion) have been synthesized and characterized. Single-crystal X-ray structure determinations reveal an unprecedented bending and tilting of the MNO group for both [MNO](6) species as well as significant lengthening of trans axial bond distances. In (OEP)Fe(NO)(p-C(6)H(4)F) the Fe-N-O angle is 157.4(2) degrees, the nitrosyl nitrogen atom is tilted off of the normal to the heme plane by 9.2 degrees, Fe-N(NO) = 1.728(2) A, and Fe-C(aryl) = 2.040(3) A. In (OEP)Ru(NO)(p-C(6)H(4)F) the Ru-N-O angle is 154.9(3) degrees, the nitrosyl nitrogen atom is tilted off of the heme normal by 10.8 degrees, Ru-N(NO) = 1.807(3) A, and Ru-C(aryl) = 2.111(3) A. We show that these structural features are intrinsic to the molecules and are imposed by the strongly sigma-donating aryl ligand trans to the nitrosyl. Density functional-based calculations reproduce the structural distortions observed in the parent (OEP)Fe(NO)(p-C(6)H(4)F) and, combined with the results of extended Hückel calculations, show that the observed bending and tilting of the FeNO group indeed represent a low-energy conformation. We have identified specific orbital interactions that favor the unexpected bending and tilting of the FeNO group. The aryl ligand also affects the Fe-NO pi-bonding as measured by infrared and (57)Fe M?ssbauer spectroscopies. The solid-state nitrosyl stretching frequencies for the iron complex (1791 cm(-)(1)) and the ruthenium complex (1773 cm(-)(1)) are significantly reduced compared to their respective [MNO](6) counterparts. The M?ssbauer data for (OEP)Fe(NO)(p-C(6)H(4)F) yield the quadrupole splitting parameter +0.57 mm/s and the isomer shift 0.14 mm/s at 4.2 K. The results of our study show, for the first time, that bent Fe-N-O linkages are possible in formally ferric nitrosyl porphyrins.  相似文献   

6.
Potential energy and electron paramagnetic resonance (EPR) g tensor surfaces of model five- and six-coordinated porphyrins were examined. For both types of complexes, the NO ligand is preferably coordinated end-on, with a Fe-N-O bond angle of approximately 140 degrees. In the free five-coordinated structure, NO undergoes free rotation around the axial Fe-N(NO) bond. This motion is strongly coupled to the saddle-type distortion of the porphyrin ligand. Coordination by the second axial ligand (imidazole) raises the calculated barrier for NO rotation to about 1 kcal/mol, which is further increased by displacements of imidazole from the ideal axial position. The potential energy surface for the dissociation of the weakly coordinated imidazole ligand is exceptionally flat, with variation of the Fe-N(Im) bond length between 2.1 and 2.5 A changing the energy by less than 1 kcal/mol. Experimental orientations of both axial ligands, as well as the Fe-N(Im) bond length, are therefore likely to be determined by the environment of the complex. In contrast to the total energy, calculated EPR g-tensors are sensitive to the orientation of the NO ligand and to the Fe-N(Im) bond length. Contrary to a common assumption, the g tensor component closest to the free-electron value does not coincide with the direction of the Fe-N(NO) bond. From comparison of the calculated and experimental g-tensor components for a range of structures, the rhombic ("type I") EPR signal is assigned to a static structure with NO oriented toward the meso-C atom of the prophyrin ring, and RFe-N(Im) approximately 2.1 A (calcd g1 = 1.95, g2 = 2.00, g3 = 2.04; exptl g1 = 1.96-1.98, g2 = 2.00, g3 = 2.06-2.08). The axial ("type II") EPR signal cannot correspond to any of the static structures studied presently. It is tentatively assigned to a partially dissociated six-coordinated complex (RFe-N(Im) > 2.5 A), with a freely rotating NO ligand (calcd g parallel = 2.00, g perpendicular = 2.03; exptl g parallel = 1.99-2.00, g perpendicular = 2.02-2.03).  相似文献   

7.
The synthesis, characterization, and X-ray structures of three low-spin (nitrosyl)iron(II) tetraarylporphyrinates, [Fe(TpXPP)(NO)(1-MeIm)], where X = F (in a triclinic and a monoclinic form) and OCH(3) are reported. All three molecules, at 100 K, have a single orientation of NO. These structures are the first examples of ordered NO's in [Fe(Porph)(NO)(1-MeIm)] complexes. The three new derivatives have similar structural features including a previously unnoted "bowing" of the N(NO)-Fe-N(Im) angle caused by a concerted tilting of the axial Fe-N(NO) and Fe-N(Im) bonds. Structural features such as the displacement of Fe out of the mean porphyrin plane toward NO, tilting of the Fe-N(NO) bond off the heme normal, and the asymmetry of the Fe-N(por) bonds further strengthen and confirm observations from earlier studies. The [Fe(TpXPP)(NO)(1-MeIm)] complexes were also studied at temperatures between 125 and 350 K to investigate temperature-dependent variations and trends in the coordination group geometry. At varying temperatures (above 150 K), all three derivatives display a second orientation of the NO ligand. The population and depopulation of this second orientation are thermally driven, with no apparent hysteresis. Crystal packing appears to be the significant feature in defining the order/disorder of the NO ligand. The length of the bond trans to NO, Fe-N(Im), was also found to be sensitive to temperature variation. The Fe-N(Im) bond length increases with increased temperature, whereas no other bonds change appreciably. The temperature-dependent Fe-N(Im) bond length change and cell volume changes are consistent with a "soft" Fe-N(Im) bond. Variable-temperature measurements show that the N-O stretching frequency changes with the Fe-N(Im) bond length. Temperature-dependent changes in the Fe-NIm bond length and N-O stretching frequency were also found to be completely reversible with no apparent hysteresis.  相似文献   

8.
A new benzimidazole-based diamide ligand-N,N'-bis(glycine-2- benzimidazolyl)hexanediamide (GBHA)-has been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBHA)X]X, where X is an exogenous anionic ligand (X = Cl(-), NO(3)(-), SCN(-)). The X-ray structure of one of the complexes, [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH, has been obtained. The compound crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 26.464(3) A, b = 10.2210(8) A, c = 20.444(2) A, alpha = 90 degrees, beta = 106.554(7) degrees, gamma = 90 degrees, V= 5300.7(9) A(3), and Z = 8. To the best of our knowledge, the [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH complex is the first structurally characterized mononuclear trigonal bipyramidal copper(II) bisbenzimidazole diamide complex having coordinated amide carbonyl oxygen. The coordination geometry around the Cu(II) ion is distorted trigonal bipyramidal (tau = 0.59). Two carbonyl oxygen atoms and a chlorine atom form the equatorial plane, while the two benzimidazole imine nitrogen atoms occupy the axial positions. The geometry of the Cu(II) center in the solid state is not preserved in DMSO solution, changing to square pyramidal, as suggested by the low-temperature EPR data g( parallel) > g( perpendicular) > 2.0023. All the complexes display a quasi-reversible redox wave due to the Cu(II)/Cu(I) reduction process. E(1/2) values shift anodically from Cl(-) < NO(3)(-) < SCN(-), indicating that the bound Cl(-) ion stabilizes the Cu(II) ion while the N-bonded SCN(-) ion destabilizes the Cu(II) state in the complex. When calculated against NHE, the redox potentials turn out to be quite positive as compared to other copper(II) benzimidazole bound complexes (Nakao, Y.; Onoda, M.; Sakurai, T.; Nakahara, A.; Kinoshita, L.; Ooi, S. Inorg. Chim. Acta 1988, 151, 55. Addison, A. W.; Hendricks, H. M. J.; Reedijk, J.; Thompson, L. K. Inorg. Chem. 1981, 20 (1), 103. Sivagnanam, U.; Palaniandavar, M. J. Chem. Soc., Dalton Trans. 1994, 2277. Palaniandavar, M.; Pandiyan, T.; Laxminarayan, M.; Manohar, H. J. Chem. Soc., Dalton Trans. 1995, 457. Sakurai, T.; Oi, H.; Nakahara, A. Inorg. Chim. Acta 1984, 92, 131). It is therefore concluded that binding of amide carbonyl oxygen destabilizes the Cu(II) state. The complex [Cu(II)(GBHA)(NO(3))](NO(3)) could be successfully reduced by the addition of dihydroxybenzenes to the corresponding [Cu(I)(GBHA)](NO(3)). (1)H NMR of the reduced complex shows slightly broadened and shifted (1)H signals. The reduction of the Cu(II) complex presumably occurs with the corresponding 2e(-) oxidation of the quinol to quinone. Such a conversion is reminiscent of the functioning of a copper-containing catechol oxidase from sweet potatoes and the met form of the enzyme tyrosinase.  相似文献   

9.
The NMR and EPR spectra for three complexes, iron(III) octamethyltetraphenylporphyrin bis(4-cyanopyridine) perchlorate, [FeOMTPP(4-CNPy)(2)]ClO(4), and its octaethyl- and tetra-beta,beta'-tetramethylenetetraphenylporphyrin analogues, [FeOETPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4), are presented. The crystal structures of two different forms of [FeOETPP(4-CNPy)(2)]ClO(4) and one form of [FeOMTPP(4-CNPy)(2)]ClO(4) are also reported. Attempts to crystallize [FeTC(6)TPP(4-CNPy)(2)]ClO(4) were not successful. The crystal structure of [FeOMTPP(4-CNPy)(2)]ClO(4) reveals a saddled porphyrin core, a small dihedral angle between the axial ligand planes, 64.3 degrees, and an unusually large tilt angle (24.4 degrees ) of one of the axial 4-cyanopyridine ligands with respect to the normal to the porphyrin mean plane. There are 4 and 2 independent molecules in the asymmetric units of [FeOETPP(4-CNPy)(2)]ClO(4) crystallized from CD(2)Cl(2)/dodecane (1-4) and CDCl(3)/cyclohexane (5-6), respectively. The geometries of the porphyrin cores in 1-6 vary from purely saddled to saddled with 15% ruffling admixture. In all structures, the Fe-N(p) distances (1.958-1.976 A) are very short due to strong nonplanar distortion of the porphyrin cores, while the Fe-N(ax) distances are relatively long ( approximately 2.2 A) compared to the same distances in S = (1)/(2) bis(pyridine)iron(III) porphyrin complexes. An axial EPR signal is observed (g( perpendicular ) = 2.49, g( parallel ) = 1.6) in frozen solutions of both [FeOMTPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4) at 4.2 K, indicative of the low spin (LS, S = (1)/(2)), (d(yz)d(xz))(4)(d(xy))(1) electronic ground state for these two complexes. In agreement with a recent publication (Ikeue, T.; Ohgo, Y.; Ongayi, O.; Vicente, M. G. H.; Nakamura, M. Inorg. Chem. 2003, 42, 5560-5571), the EPR spectra of [FeOETPP(4-CNPy)(2)]ClO(4) are typical of the S = (3)/(2) state, with g values of 5.21, 4.25, and 2.07. A small amount of LS species with g = 3.03 is also present. However, distinct from previous conclusions, large negative phenyl-H shift differences delta(m) - delta(o) and delta(m) - delta(p) in the (1)H NMR spectra indicate significant negative spin density at the meso-carbons, and the larger than expected positive average CH(2) shifts are also consistent with a significant population of the S = 2 Fe(II), S = (1)/(2) porphyrin pi-cation radical state, with antiferromagnetic coupling between the metal and porphyrin unpaired electrons. This is the first example of this type of porphyrin-to-metal electron transfer to produce a partial or complete porphyrinate radical state, with antiferromagnetic coupling between metal and macrocycle unpaired electrons in an iron porphyrinate. The kinetics of ring inversion were studied for the [FeOETPP(4-CNPy)(2)]ClO(4) complex using NOESY/EXSY techniques and for the [FeTC(6)TPP(4-CNPy)(2)]ClO(4) complex using DNMR techniques. For the former, the free energy of activation, deltaG, and rate of ring inversion in CD(2)Cl(2) extrapolated to 298 K are 63(2) kJ mol(-)(1) and 59 s(-)(1), respectively, while for the latter the rate of ring inversion at 298 K is at least 4.4 x 10(7) s(-)(1), which attests to the much greater flexibility of the TC(6)TPP ring. The NMR and EPR data are consistent with solution magnetic susceptibility measurements that show S = (3)/(2) in the temperature range from 320 to 180 K for [FeOETPP(4-CNPy)(2)](+), while both [FeOMTPP(4-CNPy)(2)](+) and [FeTC(6)TPP(4-CNPy)(2)](+) change their spin state from S = (3)/(2) at room temperature to mainly LS (S = (1)/(2)) upon cooling to 180 K.  相似文献   

10.
The structure of the laser-light-induced metastable state MS(1) of the [Ru(NO(2))(4)(OH)(NO)](2)(-) anion in K(2)[Ru(NO(2))(4)(OH)(NO)] was determined by X-ray analysis at 50 K of a crystal with a 16% excited-state population. Results of an independent determination of the ground-state structure were used in the analysis. The most pronounced geometrical change upon excitation was an increase of the Ru-(NO) distance by 0.097(11) ?, significantly larger than the change of the corresponding distance in sodium nitroprusside (Pressprich, M. R.; White, M. A.; Vekhter, Y.; Coppens, P. J. Am. Chem. Soc. 1994, 116, 5233-5238). A decrease in the angleRu-(N-O) angle from 174.0(2) to 169(1) degrees was observed. The diffraction results provide evidence that the photoinduced state MS(1) of the transition metal nitrosyl complexes is a linkage isomer in which the NO group is attached to the metal atom through the oxygen, instead of through the nitrogen atom, rather than an electronic excited state as reported previously.  相似文献   

11.
New alkoxide (OEP)Os(NO)(OR) (OEP = 2,3,7,8,12,13,17,18-octaethylporphyrinato dianion; R = ethyl, isopropyl, hexyl, cyclohexyl) compounds and alcohol [(OEP)Os(NO)(HOR)]+ complexes (R = methyl, ethyl, isopropyl, hexyl, cyclohexyl) have been prepared in high yields and have been fully characterized by IR, 1H NMR, and UV-vis spectroscopy, and by elemental analyses. The (OEP)Os(NO)(OEt) compound was characterized by single-crystal X-ray crystallography. The cationic aqua and alcohol [(OEP)Os(NO)(HOR)]+ complexes (R = ethyl, isopropyl, hexyl) complexes were also characterized by single-crystal X-ray crystallography, and the latter represent the first osmium alcohol structures to be reported. The electrophilic [(OEP)Os(NO)]+ cation in the [(OEP)Os(NO)(HOR)]+ complexes renders the coordinated alcohol ligands susceptible to deprotonation by pyridine to produce the corresponding alkoxide (OEP)Os(NO)(OR) derivatives. A one-pot reaction sequence for the preparation of new (OEP)Os(NO)(OR) complexes from (OEP)Os(NO)(OEt) was developed, which was based on (i) initial protonation of the ethoxide compound to give [(OEP)Os(NO)(HOEt)]+, (ii) alcohol substitution by ROH to give [(OEP)Os(NO)(HOR)]+, and (iii) deprotonation of the latter by pyridine to give (OEP)Os(NO)(OR).  相似文献   

12.
The powder and single-crystal EPR spectra of Co(II)(OEP) (OEP is the dianion of octaethylporphyrin) doped into a range of diamagnetic crystals including simple four-coordinate hosts, H(2)(OEP), the triclinic B form of Ni(II)(OEP), the tetragonal form of Ni(II)(OEP) and Zn(II)(OEP); five-coordinate hosts, micro-dioxane)[Zn(II)(OEP)](2) and (py)Zn(II)(OEP); six-coordinate hosts, (py)(2)Zn(II)(OEP) and (py)(2)Mg(II)(OEP); and hosts containing fullerenes, C(60).2Zn(II)(OEP).CHCl(3), C(70).Ni(II)(OEP).C(6)H(6).CHCl(3), and C(60).Ni(II)(OEP).2C(6)H(6) have been obtained and analyzed. Spectra were simulated using a program that employed the exact diagonalization of the 16 x 16 complex spin Hamiltonian matrix. The EPR spectra of these doped samples are very sensitive to the environment within each crystal with the crystallographic site symmetry determining whether axial or rhombic resonance patterns are observed. For Co(II)(OEP) doped into tetragonal Ni(II)(OEP) (which displays a very large g( perpendicular ) of 3.405 and a very small g( parallel ) of 1.544) and several other crystals containing four-coordinate metal sites, the g components could not be fit using existing theory with the assumption of the usual z(2) ground state. However, reasonable agreement of the observed EPR parameters could be obtained by assuming that the unpaired electron resides in an xy orbital in the four-coordinate complexes.  相似文献   

13.
The synthesis and characterization of low-spin bis(2-methylimidazole)(octaethylporphyrinato)iron(III) chloride (perp[Fe(OEP)(2-MeHIm)2]Cl) is reported. The structure shows that the cation is a low-spin species with two imidazole ligands having a relative perpendicular orientation. The porphyrin core is very ruffled, which leads to shortened equatorial bonds of 1.974(4) A and slightly elongated axial Fe-N bond lengths of 2.005(10) A that are about 0.02 A shorter and 0.03 A longer, respectively, in comparison to bis-imidazole ligated iron(III) species with parallel oriented axial ligands. A one-dimensional hydrogen-bond chain is formed between chloride anions and uncoordinated imidazole nitrogen atoms. Compared with paral-[Fe(OEP)(2-MeHIm)2]ClO4, hydrogen bonding may play an important role in the differences in the two structures. M?ssbauer spectra show broadened quadrupole doublets with quadrupole splittings of 1.81 mm/s at RT and 1.94 mm/s at 20 K. The isomer shift ranges from 0.26 to 0.36 mm/s. These confirm that the title complex is a low-spin iron(III) species with the ground state (dxy)2(dxz,dyz)3. Crystal data: monoclinic, space group P2(1)/c, a = 14.066(3) A, b, 20.883(4) A, c = 19.245(4) A, beta = 109.67 degrees , and Z = 4.  相似文献   

14.
The low-temperature data for the reaction between OH and C(2)H(4) is treated canonically as either a two-well or one-well problem using the "Multiwell" suite of codes, in which a "well" refers to a minimum in the potential energy surface. The former is analogous to the two transition state model of Greenwald et al. [Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A2005, 109, 6031], while the latter reflects the dominance of the so-called "inner transition state". External rotations are treated adiabatically, causing changes in the magnitude of effective barriers as a function of temperature. Extant data are well-described with either model using only the average energy transferred in a downward direction, upon collision, ΔE(d)(T), as a fitting parameter. The best value for the parameters describing the rate coefficient as a function of temperature (200 < T/K < 400) (Data at lower temperature is too sparse to yield a recommendation.) and pressure in the form used in the NASA/JPL format [Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Jet Propulsion Laboratory, 2011] are k(0) = 1.0 × 10(-28)(T/300)(-3.5) cm(6) molecule(-2) s(-1) and k(∞) to 8.0 × 10(-12)(T/300)(-2.3) cm(3) molecule(-1) s(-1).  相似文献   

15.
The decay of peroxynitrite [O=NOO(-), oxoperoxonitrate(1-)] was examined as a function of concentration (0.050-2.5 mM), temperature (5-45 degrees C), and pH (2.2-10.0). Below 5 degrees C and pH 7, little amounts of the decomposition products nitrite and dioxygen are formed, even when the peroxynitrite concentration is high (2.5 mM). Instead, approximately > or =90% isomerizes to nitrate. At higher pH, decomposition increases at the expense of isomerization, up to nearly 80% at pH 10.0 at 5 degrees C and 90% at 45 degrees C. Much less nitrite and dioxygen per peroxynitrite are formed when the peroxynitrite concentration is lower; at 50 microM and pH 10.2, < or =40% decomposes. In contrast to two other reports (Pfeiffer, S.; Gorren, A. C. F.; Schmidt, K.; Werner, E. R.; Hansert, B.; Bohle, D. S.; Mayer, B. J. Biol. Chem. 1997, 272, 3465-3470, and Coddington, J. W.; Hurst, J. K.; Lymar, S. V. J. Am. Chem. Soc. 1999, 121, 2438-2443), we find that the extent of decomposition is dependent on the peroxynitrite concentration.  相似文献   

16.
We have examined the redox behavior of the osmium and ruthenium compounds (OEP)M(NO)(OEt) and (OEP)M(NO)(SEt) (OEP = octaethylporphyrinato dianion; M = Os, Ru) by cyclic voltammetry and infrared spectroelectrochemistry. The compound (OEP)Os(NO)(OEt) undergoes a single reversible oxidation process in dichloromethane. In contrast, the thiolate compound (OEP)Os(NO)(SEt) undergoes a net irreversible oxidation resulting in formal loss of the SEt ligand. Extended Hückel calculations on crystal structures of these two compounds provide insight into the nature of their HOMOs. In the case of the alkoxide compound, the HOMO is largely metal centered, with 70% of the charge located in the metal's orbital and approximately 25% on the porphyrin ring. However, the HOMO of the thiolate compound consists of a pi bonding interaction between the metal dxz orbital and the px orbital on the sulfur, and a pi antibonding interaction between the metal d orbital and a pi* orbital on NO. The redox behavior of the Ru analogues have been determined, and are compared with those of the Os compounds.  相似文献   

17.
Experimental and computational results for different ruthenium nitrosyl porphyrin complexes [(Por)Ru(NO)(X)] ( n+ ) (where Por (2-) = tetraphenylporphyrin dianion (TPP (2 (-) )) or octaethylporphyrin dianion (OEP (2-)) and X = H 2O ( n = 1, 2, 3) or pyridine, 4-cyanopyridine, or 4- N,N-dimethylaminopyridine ( n = 1, 0)) are reported with respect to their electron-transfer behavior. The structure of [(TPP)Ru(NO)(H 2O)]BF 4 is established as an {MNO} species with an almost-linear RuNO arrangement at 178.1(3) degrees . The compound [(Por)Ru(NO)(H 2O)]BF 4 undergoes two reversible one-electron oxidation processes. Spectroelectrochemical measurements (IR, UV-vis-NIR, and EPR) indicate that the first oxidation occurs on the porphyrin ring, as evident from the appearance of diagnostic porphyrin radical-anion vibrational bands (1530 cm (-1) for OEP (*-) and 1290 cm (-1) for TPP (*-)), from the small shift of approximately 20 cm (-1) for nu NO and from the EPR signal at g iso approximately 2.00. The second oxidation, which was found to be electrochemically reversible for the OEP compound, shows a 55 cm (-1) shift in nu NO, suggesting a partially metal-centered process. The compounds [(Por)Ru(NO)(X)]BF 4, where X = pyridines, undergo a reversible one-electron reduction. The site of the reduction was determined by spectroelectrochemical studies to be NO-centered with a ca. -300 cm (-1) shift in nu NO. The EPR response of the NO (*) complexes was essentially unaffected by the variation in the substituted pyridines X. DFT calculations support the interpretation of the experimental results because the HOMO of [(TPP)Ru(NO)(X)] (+), where X = H 2O or pyridines, was calculated to be centered at the porphyrin pi system, whereas the LUMO of [(TPP)Ru(NO)(X)] (+) has about 50% pi*(NO) character. This confirms that the (first) oxidation of [(Por)Ru(NO)(H 2O)] (+) occurs on the porphyrin ring wheras the reduction of [(Por)Ru(NO)(X)] (+) is largely NO-centered with the metal remaining in the low-spin ruthenium(II) state throughout. The 4% pyridine contribution to the LUMO of [(TPP)Ru(NO)(py)] (+) is correlated with the stability of the reduced form as opposed to that of the aqua complex.  相似文献   

18.
The characterization of high-valent iron species is of interest due to their relevance to biological reaction mechanisms. Recently, we have synthesized and characterized an [Fe(V)-nitrido-cyclam-acetato]+ complex, which has been characterized by M?ssbauer, magnetic susceptibility data, and XAS spectroscopies combined with DFT calculations (Aliaga-Alcade, N.; DeBeer George, S.; Bill, E.; Wieghardt, K.; Neese, F. Angew. Chem., Int. Ed. 2005, 44, 2908-2912). The results of this study indicated that the [Fe(V)-nitrido-cyclam-acetato]+ complex is an unusual d3 system with a nearly orbitally degenerate S=1/2 ground state. Although the calculations predicted fairly different Fe-N stretching frequencies for the S=1/2 and the competing S=3/2 ground states, a direct experimental determination of this important fingerprint quantity was missing. Here we apply synchrotron-based nuclear resonance vibrational scattering (NRVS) to characterize the Fe-N stretching frequency of an Fe(V)-nitrido complex and its Fe(III)-azide precursor. The NRVS data show a new isolated band at 864 cm(-1) in the Fe(V)-nitrido complex that is absent in the precursor. The NRVS spectra are fit and simulated using a DFT approach, and the new feature is unambiguously assigned to a Fe(V)-N stretch. The calculated Fe-N stretching frequency is too high by approximately 75 cm(-1). Anharmonic contributions to the Fe-N stretching frequency have been evaluated and have been found to be small (-5.5 cm(-1)). The NRVS data provided a unique opportunity to obtain this vibrational information, which had eluded characterization by more traditional vibrational spectroscopies.  相似文献   

19.
Heterometallic linear tetramers [Mn(5-R-saltmen)Ni(pao)(bpy)(2)](2)(ClO(4))(4) (5-R-saltmen(2-) = N,N'-1,1,2,2-tetramethylethylene bis(5-R-salicylideneiminate); pao(-) = pyridine-2-aldoximate; bpy = 2,2'-bipyridine, R = H, 1; Cl, 2; Br, 3; MeO, 4) have been synthesized and structurally characterized. These compounds exhibit a [Ni(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-Ni(II)] skeleton where -ON- is an oximate bridge between Mn(III) and Ni(II) ions and -(O)(2)- is a bi-phenolate bridge between Mn(III) ions. These tetramers can be seen as oligomeric units of the heterometallic Mn(III)(2)-Ni(II) chain observed in a family of single-chain magnets (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. Miyasaka, H.; Clérac, R.; Mizushima, K.; Sugiura, K.; Yamashita, M.; Wernsdorfer, W.; Coulon, C. Inorg. Chem. 2003, 42, 8203.). Magnetic measurements on these tetramers confirm the nature of the magnetic interactions reported for the Mn(III)(2)-Ni(II) chains: a strong antiferromagnetic Mn(III)/Ni(II) coupling via the oximate bridge (J(Ni-Mn) ranges from -23.7 to -26.1 K) and a weak ferromagnetic Mn(III)/Mn(III) coupling through the bi-phenolate bridge (J(Mn-Mn) ranges from +0.4 to +0.9 K). These magnetic interactions lead to tetramers with an S = 2 ground state.  相似文献   

20.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号