首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To quantitatively understand the uncertainty of intrusive species sampling measurements using a microprobe, velocity and speciation profiles of acetone counterflow diffusion flames have been experimentally investigated with cross validations using non-intrusive particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements. It is shown that the separation distance between the fuel and oxidizer nozzles needs to be sufficiently large to achieve uniform radial velocity profiles at the nozzle exit and accurate measurements of fuel concentration distributions in flames. The impacts of the diffusion flame location relative to the stagnation plane and the diffusion flame thickness on quantitative species sampling are investigated by varying the fuel to oxygen ratio as well as nitrogen and helium as fuel diluents. The results show that the diffusion flame needs to be located on the fuel side far from the stagnation plane in order to obtain reliable speciation measurements of fuel oxidation-related species. For helium dilution in the fuel side, a significant deviation from the model prediction is found due to the excessively fast diffusion velocity of helium. The impact of the intrusive probe on the flow field and the structure of the counterflow diffusion flame are identified by acetone and OH LIF measurements. The uncertainty in the speciation measurement associated with flow perturbations by the probe is quantified and found to be comparable to the outer diameter of the probe, ±0.3 mm. A simple Reynolds number analysis shows that the flow near the probe is just on the outskirts of the Stokes regime. Finally, the structure of the acetone diffusion flame is measured quantitatively with species measurements of ethane, ethylene, and acetylene. The comparison between predictions and measurements indicate that the current C2 kinetic mechanism needs to be improved for quantitative prediction of the acetone flame structures.  相似文献   

2.
Simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) utilizing R-branch transitions in the C-X (0,0) band were performed at a 10-kHz repetition-rate in a turbulent premixed flame. The CH lines at 310.690?nm (from the R-branch of the C-X band) used here have greater efficiency than A-X and B-X transitions, which allows for high-framerate imaging with low laser pulse energy. Most importantly, the simultaneous imaging of both CH PLIF and PIV is enabled by the use of a custom edge filter, which blocks scattering at the laser wavelength (below ~311?nm) while efficiently transmitting fluorescence at longer wavelengths. The Hi-Pilot Bunsen burner operated with a turbulent Reynolds number of 7900 was used to demonstrate simultaneous PIV and CH PLIF utilizing this filtered detection scheme. Instances where pockets of products were observed well upstream of the mean flame brush are found to be the result of out-of-plane motion of the flame sheet. Such instances can lead to ambiguous results when interpreting the thickness of reaction layers. However, the temporally resolved nature of the present diagnostics facilitate the identification and proper treatment of such situations. The strategy demonstrated here can yield important information in the study of turbulent flames by providing temporally resolved flame dynamics in terms of flame sheet visualization and velocity fields.  相似文献   

3.
The turbulent deflagration to detonation transition (DDT) process occurs when a subsonic flame interacts with intense turbulence resulting in spontaneous acceleration and the onset of DDT. The mechanisms that govern the spontaneous ignition are deduced intricately in numerical simulations. This work experimentally explores the conditions that are known precursors to detonation initiation. More specifically, the experiment presented investigates the role of flame-generated compression as a cycle that continuously amplifies until a hotspot forms on the flame front and ignites. The study quantifies the compression comparatively against other flame regimes through ultra-high speed pressure measurements while qualitatively detailing flame generated compression through density gradients via schlieren imaging. Additionally, flow field measurements are quantified throughout the flow using simultaneous particle image velocimetry (PIV) and OH* chemiluminescence. The turbulence fluctuations and flame speeds are extracted from these measurements to identify the reactant conditions where flame-generated compression begins. Collectively, these simultaneous high-speed measurements provide detailed insight into the flame and flow field characteristics where the runaway process occurs. This work ultimately documents direct flow field measurements to extract the contribution of flame-generated turbulence on the turbulent deflagration to detonation transition process.  相似文献   

4.
A thorough understanding of turbulent reacting flows is essential to the continued development of practical combustion systems. Combustor codes can be validated using data such as those generated in this study of a vortex interacting with a nonpremixed, opposed-jet hydrogen-air flame. When experimental results are compared with model predictions, the underlying flowfield must be matched carefully. Since the vortex-injection process used in the present experiments can result in many types of vortices, including multiple vortices, restrictions on the experimental operation of the burner are required as well as careful vortex characterization. Vortex-characterization data are acquired using digital, two-color particle-image velocimetry (PIV), and the hydroxyl (OH) layer produced by the flame is imaged using planar laser-induced fluorescence (PLIF). The PIV and OH PLIF measurements are performed simultaneously. Good agreement with previous numerical-modeling predictions is obtained when experiments and computations are performed using similar vortex conditions.  相似文献   

5.
The concentration gradient and uniform mean velocity of a triple flame in a mixing layer were studied using a multi-slot burner, which can stabilize the lift-off flame especially at a very small concentration gradient. Flame stabilization conditions were examined, and the lift-off heights of the triple flame were measured for methane and propane flames. A hot-wire anemometer was used to measure the velocity distributions. Mass spectroscopy (for methane) and Rayleigh scattering (for propane) were used to measure the concentration gradients. OH radical distribution was measured by laser-induced fluorescence (LIF), and in-stream velocity variation was measured with particle-image velocimetry (PIV). Maximum in-stream temperatures were measured using the coherent anti-Stokes Raman scattering (CARS) technique. Lift-off heights of triple flames have minimum values during the increase of concentration gradient, and the propagation velocity of triple flames reaches its maximum at a critical concentration gradient. This is caused by three factors: velocity distribution upstream, flammable limit of premixed gas, and reaction of diffusion flame. The critical concentration gradient, which maximizes the propagation velocity is suggested as a new criterion of transition from a premixed flame to a triple flame.  相似文献   

6.
A combination of particle imaging velocimetry (PIV), particle tracking velocimetry (PTV) and planar laser-induced fluorescence (PLIF) was employed to measure conditional flow field statistics in partially premixed turbulent opposed jet flames. These flames were observed to be very sensitive to excessive seeding of particles. Since flames close to extinction were studied, very low seeding densities were required to prevent impact on the extinction behavior of the flame, and conventional PIV algorithms would have resulted in poor spatial resolution. An improved PIV algorithm was developed, in connection with a PTV procedure used in high-temperature regions of low seed density, and revealed high in-plane resolution up to 300 μm. The PIV/PTV algorithm slightly under-resolved the Kolmogorov scales for the present cases, whereas Batchelor scales were fully resolved in-plane by the simultaneous OH PLIF. In the data processing, transient OH contours obtained from single-shots were used to define flame-fixed coordinates. Conditional velocities, out-of-plane vorticity, 2D dilatation, and both axial and radial strain were processed from the data. The conditional statistics show that vorticity is preferably generated close to the reaction zone, particularly at off-centerline positions. Hence, flow-chemistry interactions could be identified directly in the region of the reaction zone. This finding was also supported by qualitative high speed Mie scattering/chemiluminescence imaging that permitted temporally resolved visualization of the formation of eddies just upstream of the luminous flame areas.  相似文献   

7.
A computational method is described in order to correct OH LIF temperature measurements for absorption of laser energy and trapping of fluorescence. Calculations are performed in a large range of flame conditions and can be used as a correction data base both in case of (0-0) and (1?0) excitations. Comparison of corrected temperatures profiles obtained in a 40 Torr methanol/air flame, for both kinds of Laser-Induced Fluorescence (LIF) excitations shows a very good agreement. This method is applied to measure the temperature profile of a methanol flame perturbed by a sampling probe. The LIF collection volume is located at the actual probe sampled volume using an experimental procedure already described. Spatial resolution and sensitivity of temperature measurements are sufficiently efficient to highlight, for the first time by LIF, an indubitable cooling effect due to the probe presence that induces important OH profile change. According to flame chemical modelling, it is shown that both effects are strongly correlated.  相似文献   

8.
In this paper, we present a detailed experimental study of turbulence chemistry interactions in the “DLR_B” turbulent jet diffusion flame. The flame operates on mixtures of CH4, H2, and N2 in the fuel stream at Re = 22,800 and is a target flame within the TNF workshop. Extinction and re-ignition events can be tracked in real time and related to the underlying flow field phenomena and temperature fields. Time resolved measurements of OH radical concentration fields are performed in combination with temperature and velocity field measurements. For this purpose, we combined high repetition rate (33 kHz) PLIF imaging with stereoscopic PIV and double pulse Rayleigh imaging techniques. Comparisons are made with results from multi-scalar Raman/Rayleigh/LIF point measurements that reveal the thermochemical state of the flame. The large deviations from equilibrium observed on resulting OH/temperature joint pdfs could be related to strain rate and Damköhler number variations caused by turbulent flow structures leading to frequent extinctions. The 2D measurement series uniquely reveal the underlying mechanism that can lead to such events. Finally, comparisons are made to strained laminar flame calculations, which are generally found to be in good agreement with the measured data.  相似文献   

9.
A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.  相似文献   

10.
An understanding of flame propagation needs the knowledge of the flame location and of the velocity field near the front. Time resolved laser Tomography coupled with high resolution cross correlation PIV has been developed. The method is based on the use of a copper vapor laser and a highspeed camera. The seeding level used for tomography provides an excellent resolution of the flame location and of the velocity vectors in the fresh gases. Experiment is conducted in a simulated engine where turbulence is controlled by means of a perforated grid. Interest is shown for the determination of laminar burning velocity and for the study of interaction between the flame front and the turbulent structures. Perspectives of stereoscopic PIV are also started on. It is shown that the existence of a normal component to the sheet plane of the velocity can lead to an erroneous flame velocity determination.  相似文献   

11.
Velocities and flame front locations are measured simultaneously in a turbulent, side-wall quenching (SWQ) V-shaped flame during flame-wall interaction (FWI) at 1 and 3 bar by means of particle image velocimetry (PIV) and planar laser-induced fluorescence of the OH radical (OH-PLIF). The turbulent flame brush is characterized based on the spatial distribution of the mean reaction progress variable and a common direct method is used to derive the flame surface density (FSD) from the two-dimensional data by image processing. As the near-wall reaction zone is limited to a smaller region closer to the wall at higher pressure, higher peak values are observed in the FSD at 3 bar. A second definition of the FSD adapted for flames exposed to quenching is utilized similar to previous studies emphasizing the impact of FWI. The influence of the wall on the flame front topology is investigated based on a flame front-conditioned FSD and its variability within the data set. In a last step, an estimate of the mean reaction rate is deduced using an FSD model and evaluated in terms of integral and space-averaged values. A decreasing trend of integral mean reaction rate in regions with increasing flame quenching is observed for both operating conditions, but more pronounced at 3 bar. Space-averaged mean reaction rates, however, increase in the quenching region, as the size of the reaction zone decreases.  相似文献   

12.
Time-resolved particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF), both at 5 kHz, were applied simultaneously on extinguishing turbulent opposed jet flames. This repetition rate allowed tracking of transient extinction events in turbulent combustion. The additional information acquired about time history enabled a study of the evolution of vortex-flame interactions leading to extinction from individual events. A newly introduced multidimensional conditioning technique to avoid spatial- and temporal-smearing of important flow field information was developed in order to compare individual extinction events in a meaningful, statistical manner. The conditional statistics show that vortices tend to align around the flame and generate regions of high strain in the region where the flame is about to extinguish.  相似文献   

13.
We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

14.
This paper utilises large eddy simulation (LES) to study swirling reacting flows by comparison with experimental observations. The purpose is to provide further insights in engineering designs, as well as to improve modelling. A reduced-scale swirl burner has been developed for the experiments. Comparison of particle image velocimetry (PIV) measurements with LES results using finite rate chemistry shows that LES captures all the salient features of an unconfined flame including velocity and temperature distributions. However, when the flame is confined within a cylindrical combustor, the simulated flame shape is initially not consistent with experimental observation. Investigations show that the discrepancy is caused by the often practised assumption of adiabatic wall temperature. With the use of an assumed wall temperature distribution guided by laboratory observation, results of LES are consistent with experiments. Although the latter LES approach requires more computational resources, the improvement is found to be justified.  相似文献   

15.
This paper describes an analysis of the mechanisms of autoignition-controlled flame initiation and flame stabilization in a nonpremixed jet in crossflows, using simultaneous high-speed (10 kHz) tomographic particle image velocimetry, OH-PLIF and line-of-sight flame emissions. Measurements are conducted on a turbulent, transverse, reacting propane jet issued into a crossflow generated by combustion of natural gas at an equivalence ratio of 0.4 with the crossflow velocity of 10 m/s, the crossflow temperature of 1350 K and the jet momentum flux ratio of 41. While several prior studies have analyzed the lifted character of the flame in similar configurations, we show that several dynamic processes precede the leading edge of the lifted diffusion flame, including formation and evolution of “autoignition kernels”, “flame kernels” and “flame fragments”. “Autoignition kernels”, i.e., discrete compact reaction zones with the peak hydroxyl (OH) fluorescence intensity below that of the diffusion flame, initiate preferably at bulges along the jet periphery where the strain rates and the scalar dissipation rates are lower. The autoignition kernel grows in both size and the OH-fluorescence intensity as it convects downstream. An autoignition kernel transitions into a propagating flame kernel, which quickly gets distorted and elongated in the direction of the principal expansion strain rate to form a flame fragment. Neighboring flame fragments merge with each other and with the downstream diffusion flame via edge-flame propagation. Merging of upstream flame fragments with the downstream diffusion flame results in an upstream advancement of the diffusion-flame front. The diffusion flame front is intrinsically unsteady because of the rather random formation and evolution of autoignition kernels, flame kernels and flame fragments, presumably due to the stochastic velocity, the strain rate and mixture-fraction oscillations.  相似文献   

16.
In the present study, we used a simultaneous PIV-OH PLIF measurement to acquire the strain rate and the chemical intensity and suggested a new combustion phase diagram. This simultaneous measurement was used to analyze the flame structure and to classify the combustion regimes of the opposed impinging jet combustor according to the change of the orifice diameters at the pre-chambers. The shear strain rates were obtained from the velocity measurement by PIV to represent flow characteristics and the OH radical intensities were obtained from OH PUF to indicate the flame characteristics. When the strain rate and OH intensity at each point of the measurement zones are plotted at the strain rate-chemical intensity diagram, the distribution of each case showed the characteristics of each flame regime. The change of combustor condition made different distribution in the combustion phase diagram. As the orifice diameter of the pre-chamber decreases, well-mixed turbulent flames are produced and the combustion phase is moved from the moderated turbulence regime to the thickened reaction regime.  相似文献   

17.
The detailed influence of ferrocene in a low-pressure, fuel-rich, laminar, premixed propene/oxygen/argon flat flame was investigated experimentally using molecular beam sampling mass spectrometry (MBMS), laser-induced fluorescence (LIF), and compared to numerical simulations. MBMS was applied to analyze the species profiles of important intermediates in the flames with and without ferrocene doping. The concentration profile of iron atoms was measured with absorption sensitive LIF, which provides absolute number densities without additional calibrations. The flame temperature was obtained by two-line OH LIF measurements. One dimensional numerical simulations of the flames using detailed models from the literature were performed and the modeling results are compared with the experimental measurements. The iron measurements show reasonable agreement with the numerical simulation, while some discrepancies were found at larger heights. The MBMS measurements show a decrease in flame velocity when ferrocene was added, which was not provided by the model.  相似文献   

18.
The structure of hydrogen jet flame diluted by CO2 in air flow is studied by various visualization techniques, such as schlieren, direct photograph, tracer injection and reactive Mie scattering method, which allow understanding of the influence of CO2 on the characteristics of the hydrogen jet flame. The experimental result indicates that the flame structure consists of laminar fuel jet and surrounding reaction zone near the nozzle exit. When the CO2 fraction is increased, the width of the fuel jet grows and the reaction zone is reduced in size. These observations are further confirmed by quantitative measurements of temperature and velocity fields in the flame, which are evaluated by thermocouple and particle image velocimetry (PIV), respectively. These results indicate that the flame temperature is decreased and the flow rate of the fuel jet is increased by the influence of diluents, which are due to the reduced calorific value and larger density of fuel, respectively.  相似文献   

19.
Data from a recent instantaneous, simultaneous, high-resolution imaging experiment of Rayleigh temperature and laser induced fluorescence (LIF) of OH and CH2O at the base of a turbulent lifted methane flame issuing into a hot vitiated coflow are analysed and contrasted to reference flames to further investigate the stabilization mechanisms involved. The use of the product of the quantified OH and semi-quantified CH2O images as a marker for heat release rate is validated for transient autoigniting laminar flames. This is combined with temperature gradient information to investigate the flame structure. Super-equilibrium OH, the nature of the profiles of heat release rate with respect to OH mole fraction, and comparatively high peak heat release rates at low temperature gradients is found in the kernel structures at the flame base, and found to be indicative of autoignition stabilization.  相似文献   

20.
湿空气扩散燃烧火焰结构特性研究   总被引:4,自引:0,他引:4  
利用二维粒子成像速度仪(PIV)对钝体燃烧器中的甲烷/湿空气扩散燃烧的速度场进行测量,考察其火焰的结构特性及其内部流动状况。通过对湿空气燃烧流场与普通燃烧流场的对比分析表明,湿空气燃烧情况下,两种燃烧状态的火焰(回流燃烧火焰和中心射流主导火焰)相互转换的燃空速度比(γ)值要比普通燃烧的小;湿空气燃烧使得喷嘴后的同流空气的速度降低,空气的回流作用减弱,燃料更容易冲出回流区,火焰的稳定性能变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号