首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The contributions of different mechanisms of nuclear spin-lattice relaxation are experimentally separated for 69Ga and 71Ga nuclei in GaAs crystals (nominally pure and doped with copper and chromium), 23Na nuclei in a nominally pure NaCl crystal, and 27Al nuclei in nominally pure and lightly chromium-doped Al2O3 crystals in the temperature range 80–300 K. The contribution of impurities to spin-lattice relaxation is separated under the condition of additional stationary saturation of the nuclear magnetic resonance (NMR) line in magnetic and electric resonance fields. It is demonstrated that, upon suppression of the impurity mechanism of spin-lattice relaxation, the temperature dependence of the spin-lattice relaxation time T1 for GaAs and NaCl crystals is described within the model of two-phonon Raman processes in the Debye approximation, whereas the temperature dependence of T1 for corundum crystals deviates from the theoretical curve for relaxation due to the spin-phonon interaction.  相似文献   

2.
The 1H NMR line-width and spin-lattice relaxation time T1 of TSCC single crystals were studied. Variations in the temperature dependence of the spin-lattice relaxation time were observed near 65 and 130 K, indicating drastic alterations of the spin dynamics at the phase transition temperatures. The changes in the temperature dependence of T1 near 65 and 130 K correspond to phase transitions of the crystal. The anomalous decrease in T1 around 130 K is due to the critical slowing down of the soft mode. The abrupt change in relaxation time at 65 K is associated with a structural phase transition. The proton spin-lattice relaxation time of this crystal also has a minimum value in the vicinity of 185 K, which is governed by the reorientation of the CH3 groups of the sarcosine molecules. From this result, we conclude that the two phase transitions at 65 and 130 K can be discerned from abrupt variations in the 1H NMR relaxation behavior, and that 1H nuclei play important roles in the phase transitions of the TSCC single crystal.  相似文献   

3.
The35C1-NQR frequency (VQ), nuclear quadrupole spin-lattice relaxation time (T1Q),1H-NMR second moment (M 2), nuclear magnetic spin-lattice relaxation time (T 1) and spin-lattice relaxation time in rotating frame (T 1p ) were measured for polycrystalline clofibric acid (drug) as a function of temperature. Hindered rotation of two dynamically inequivalent methyl groups and the phenyl ring was detected, the relevant activation energies were determined. The rotations are discussed in detail.  相似文献   

4.
CsZnCl3 single crystals were grown by the slow evaporation method, and the spin-lattice relaxation rates and resonance lines of the 133Cs nuclei in the resulting crystals were investigated using FT NMR spectrometry. The temperature dependence of the relaxation rate of the 133Cs nuclei in the CsZnCl3 crystals was found to be continuous near TC (=366 K), and was not affected by this phase transition. Our results for CsZnCl3 are compared with those obtained previously for other CsBCl3 (B=Mn, Cu, and Cd) perovskite crystals. The Cs relaxation time of CsCdCl3 is longer than that of CsMnCl3. The differences between the atomic weights of Mn, Cu, Zn, and Cd are responsible for the differences between the spin-lattice relaxation times of these single crystals. The influence of paramagnetic ions is also important in these crystals. The differences between the spin-lattice relaxation times of these crystals could also be due to differences between the electron structures of their metal ions, in particular the structures of the d electrons.  相似文献   

5.
The 133Cs spin-lattice relaxation time in a CsHSO4 single crystal was measured in the temperature range from 300 to 450 K. The changes in the 133Cs spin-lattice relaxation rate near Tc1 (=333 K) and Tc2 (=415 K) correspond to phase transitions in the crystal. The small change in the spin-lattice relaxation time across the phase transition from II to III is due to the fact that during the phase transition, the crystal lattice does not change very much; thus, this transition is a second-order phase transition. The abrupt change of T1 around Tc2 (II-I phase transition) is due to a structural phase transition from the monoclinic to the tetragonal phase; this transition is a first-order transition. The temperature dependences of the relaxation rates in phases I, II, and III are indicative of a single-phonon process and can be represented by T1−1=A+BT. In addition, from the stress-strain hysteresis loop and the 133Cs nuclear magnetic resonance, we know that the CsHSO4 crystal has ferroelastic characteristics in phases II and III.  相似文献   

6.
The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2–300 K for single crystals of Bi4Ge3O12 doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T 2* occurred upon doping the pure Bi4Ge3O12 sample. Unlike T 2*, the effective spin-lattice relaxation time T 1* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.  相似文献   

7.
Hg-oxide ceramic high temperature superconductors were studied by199Hg and63,65Cu NMR spectroscopy. Room temperature spectra, spin-spin and spin-lattice relaxation times of samples with different superconducting transition temperatures are presented. A spin-lattice relaxation time ofT 1=35 msec and a spin-spin relaxation time ofT 2=1.6 msec were found for the199Hg NMR. All samples exhibit similar characteristic powder spectra caused by an axially symmetric199Hg spin interaction. The isotropic value and the anisotropy of the tensor relative to solid HgCl2 as a standard substance is estimated. Furthermore, results of63,65Cu NMR measurements at a temperature of 4.2 K which exhibit a typical powder line shape (forI=3/2) are presented.  相似文献   

8.
The spin-lattice relaxation rates for 1H and 39K nuclei in K3H(SO4)2 and KHSO4 single crystals, which are potential candidate materials for use in fuel cells, were determined as a function of temperature. The spin-lattice relaxation recovery of 1H can be represented for both crystals with a single exponential function, but cannot be represented by the Bloembergen-Purcell-Pound (BPP) function, so is not related to HSO4 motion. The recovery traces of 39K, which predominantly undergoes quadrupole relaxation, can be represented by a linear combination of two exponential functions. The temperature dependences of the relaxation rates for 39K can be described with a simple power law T1−1=αT2. The spin-lattice relaxation rates for the 39K nucleus in K3H(SO4)2 and KHSO4 crystals are in accordance with a Raman process dominated by a phonon mechanism.  相似文献   

9.
Investigations of the temperature- and concentration dependence of the spin-lattice relaxation time T1 in ferroelectric GASH (= Guanidinium aluminium sulfate hexahydrate) single crystals doped with Cr3+-ions are reported. The concentration-dependence found on the higher concentrated crystals C 0.1% Cr3+) as well as the observed cross-relaxation are explained in terms of spin-lattice relaxation via exchange pairs. Using the VAN VLECK formalism T1 has been estimated for Cr3+: GASH by comparision of the present system and K-Cr-alum.  相似文献   

10.
The35Cl nuclear quadrupole resonance (NQR) frequency (vQ), nuclear quadrupole spinlattice relaxation time (T1Q),1H nuclear magnetic resonance second moment (M2) and nuclear magnetic spin-lattice relaxation timeT 1) were measured for polycrystalline chloramphenicol (drug) as a function of temperature. Hindered rotation of the CHC12 group and the phenyl ring was detected, the relevant activation energies were determined. The rotations are discussed in detail.  相似文献   

11.
The spin-lattice relaxation rates of 1H and 39K nuclei in KHSeO4 crystals were studied in the temperature range 160-400 K. The spin-lattice relaxation recovery of 1H nucleus in this crystal can be represented with a single exponential function, and the relaxation T1−1 curve of 1H can be represented with the Bloembergen-Purcell-Pound (BPP) function. The relaxation process of 39K with dominant quadrupole relaxation can be described by a linear combination of two exponential functions. T1−1 for the 39K nucleus was found to have a very strong temperature dependence, T1−1=βT7. Rapid variations in relaxation rates are associated with critical fluctuations in the electronic spin system. The T7 temperature dependence of the Raman relaxation rate is shown here to be due to phonon-magnon coupling.  相似文献   

12.
The proton spin-lattice relaxation rates in [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals grown using the slow evaporation method were investigated over the temperature range 120-400 K. It was found that the relaxation processes of 1H for all the [N(CH3)4]2BCl4 crystals can be described with single exponential functions. The changes in the 1H relaxation behavior in the neighborhood of the phase transition temperatures are used to detect changes in the state of internal motion. From the 1H spin-lattice relaxation rate measurements for [N(CH3)4]2BCl4 crystals, the activation energies were calculated for each phase. The large values of the activation energies indicate that the N(CH3)4 groups are significantly affected during the transitions. Although these [N(CH3)4]2BCl4 crystals all belong to the group of A2BX4-type crystals, their 1H spin-lattice relaxation rates have different temperature dependences and indicate the occurrence of different molecular motions within the crystals. We additionally show for the first time that the differences in 1H spin-lattice relaxation rates among the [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals arise from differences in the electron structures of the metal ions within the series.  相似文献   

13.
The spin-lattice relaxation of X-irradiated ferroelectric KDA has been investigated by means of the electron spin-echo method in the range between 2 and 200 K. In the vicinity of the phase transition point an anomalous increase of T1 has been observed. This effect could not be detected for KDA-KDP mixed crystals with a high concentration of KDP. The anomaly of the spin-lattice relaxation at the phase transition is explained by the increased damping of the “hard” optical mode which governs the relaxation behaviour at this temperature region.  相似文献   

14.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

15.
Investigation of the Proton-Spin-Lattice Relaxation in the Smectic-C and Nematic Phases of Long Chain Homologues of PAA Results of comparing measurements of the temperature-, frequency and angular dependences of the spin-lattice relaxation times in the Zeeman and dipolar spin systems, T1 and T1D, for some long chain homologues of PAA are presented. In particular the temperature dependence of these time constants in the nematic phase is compared with that in the smectic-C phase.  相似文献   

16.
The temperature evolution of the proton spin-lattice relaxation time T1 in p-terphenyl and in p-quaterphenyl around their order-disorder phase transition has been measured. In both cases pretransitional collective fluctuations destroy the high temperature Arrhenius behaviour of the relaxation rate corresponding to a single reorientational jump motion. The spin-lattice relaxation times present then a drastic decrease until the transition temperature (T0 = 193 K in p-terphenyl, T0 = 238 K in p-quaterphenyl). This decrease is associated to the critical slowing down of fluctuations. In the low temperature phase the ordering phenomena lead to a sharp drop of the spin-lattice relaxation rate.  相似文献   

17.
It is given the theoretical study of some properties of strongly polarizable dielectric crystals in which off-center impurity ions induce ferroelectric phase transition. The spontaneous polarization, transition temperature, soft mode frequency, dielectric susceptibility, ultrasonic attenuation, nuclear spin-lattice relaxation are analyzed. The theory explains observed in K1?xLixTaO3 saturation of remanent polarization with off-center Li+ concentration increasing, close to x dependence of phase transition temperature, the anisotropy of ultrasonic attenuation, the absence of anomalies of Li nuclear spin-lattice relaxation rate near Tc.  相似文献   

18.
The effect on the temperature behavior of the spin-lattice relaxation rates in laboratory and rotating frames in presence of extreme slowing-down of the critical fluctuations in an Ising-type system is discussed. Proton spin-lattice relaxation measurements of T1 and T1? in water-deuterated copper formate tetrahydrate are presented. The data shown that the anomalous behavior of the proton T1? in the neighbourhood of the antiferroelectric phase transition recently observed by Zumer and Pir? in the ordinary crystal cannot be ascribed to the critical slowing-down of the water molecules. A possible interpretation on the basis of a mechanism of creation and annihilation of paramagnetic excitons is discussed.  相似文献   

19.
1H spin-lattice relaxation rate (T 1 −1 ) has been measured using inversion recovery technique in polycrystalline (NH4)2SbF5 system in the temperature range 140–400 K. From the plot of log (M 0M) againstτ, we have estimated two differentT 1 corresponding to two inequivalent ammonium ions in the unit cell. Temperature-dependence ofT 1 in each case exhibits features of double minima indicating the influence of different correlation times corresponding to different types of motion. Activation energies at different temperature regions have been estimated. Some features of dynamics of motion of the different groups of ions across the phase transitions have been discussed.  相似文献   

20.
Dislocation motion at various velocities in Na23Cl single crystals was studied using the spin-locking technique. The resulting spin-lattice relaxation time in the rotating frame, T1?, is strongly dependent on the plastic deformation rate ?e, but not on the plastic strain ?. The experimental results are in accord with a theoretical expression for T1? based on the relaxation model of Rowland and Fradin for atomic diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号