首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new general constitutive model in terms of the principal stretches is proposed to reflect limiting chain extensibility resulting in severe strain-stiffening for incompressible, isotropic, homogeneous elastic materials. The strain-energy density involves the logarithm function and has the general Valanis–Landel form. For specific functions in the Valanis–Landel representation, we obtain particular strain-energies, some of which have been proposed in the recent literature. The stress–stretch response in some basic homogeneous deformations is described for these particular strain-energy densities. It is shown that the stress response in these deformations is similar to that predicted by the Gent model involving the first invariant of the Cauchy–Green tensor. The models discussed here depend on both the first and second invariants.   相似文献   

2.
Summary Homogeneous and isotropic turbulence has been discussed in the present paper. An attempt has been made to find the simplifying hypothesis for connecting the higher order correlation tensor with the lower ones. Starting from the Navier-Stokes equations of motion for an incompressible fluid and following the usual method of taking the averages, a differential equation in Q and X, the defining scalar of the second order correlation tensor Q x and the defining scalar of a third order isotropic tensor X ijk , has been derived. The tensor X ijk stands for a tensorial expression containing the derivatives of the third and the fourth order tensors. Then the hypothesis is used that X=F(Q), where F is an unknown function. To find the forms of F, Kolmogoroff's similarity principles have been used, and thus two forms for F(Q) corresponding to two regions of the validity of these principles have been deduced.  相似文献   

3.
In 1997, H. Nozaki and M. Taya found numerically that for any regular polygonal inclusion except for a square, both the Eshelby tensor at the center and the average Eshelby tensor over the inclusion domain are equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Then in 2001, these remarkable properties were mathematically justified by Kawashita and Nozaki. In this paper, a more radical property is presented for a rotational symmetrical inclusion: For any N-fold (N is an integer greater than 2 and unequal to 4) rotational symmetrical inclusion, the arithmetic mean of the Eshelby tensors at N rotational symmetrical points in the inclusion is the same as the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. It follows that the Eshelby tensor at the center and the average Eshelby tensor over the rotational symmetrical inclusion domain are identical to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion as well. This paper shows that although the Eshelby property does not hold for non-ellipsoidal inclusions, the Eshelby tensor for a rotational symmetrical inclusion satisfies the arithmetic mean property. Mathematics Subject Classifications (2000) 73C02.  相似文献   

4.
We present a solution for the tensor equation TX + XT T = H, where T is a diagonalizable (in particular, symmetric) tensor, which is valid for any arbitrary underlying vector space dimension n. This solution is then used to derive compact expressions for the derivatives of the stretch and rotation tensors, which in turn are used to derive expressions for the material time derivatives of these tensors. Some existing expressions for n = 2 and n = 3 are shown to follow from the presented solution as special cases. An alternative methodology for finding the derivatives of diagonalizable tensor-valued functions that is based on differentiating the spectral decomposition is also discussed. Lastly, we also present a method for finding the derivatives of the exponential of an arbitrary tensor for arbitrary n.  相似文献   

5.
A new family of locally conservative cell‐centred flux‐continuous schemes is presented for solving the porous media general‐tensor pressure equation. A general geometry‐permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control‐volume distributed subcell flux‐continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2 :259–290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive‐definite (SPD) discretization matrix is obtained for the base member (q=1) of the formulation. The physical‐space schemes are shown to be non‐symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non‐symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical‐space and subcell‐space q‐families of schemes. M‐matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical‐space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell‐wise constant tensor schemes and that subcell tensor approximation using the control‐volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The objective of this paper is to provide a new irreducible nonpolynomial representation for elastic constitutive equations of cubic crystals with the material symmetry group O or T d or O h . The presented result is expressed in terms of a generating set composed of nine polynomial tensor generators. It is simpler and more compact than a recent result in terms of a generating set composed of ten tensor generators. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The two-field dual-mixed Fraeijs de Veubeke variational formulation of three-dimensional elasticity serves as the starting point of the derivation of a dimensionally reduced shell model presented in this paper. The fundamental variables of this complementary energy-based variational principle are the not a priori symmetric stress tensor and the skew-symmetric rotation tensor. The tensor of first-order stress functions is applied to satisfy translational equilibrium, while the rotation tensor plays the role of a Lagrange multiplier to ensure rotational equilibrium. The volumetric locking-free shell model uses unmodified three-dimensional constitutive equations, and no classical kinematical hypotheses are employed during the derivation. The numerical performance of the related low-order h-, and higher-order p-version finite elements developed for axisymmetrically loaded cylindrical shells is investigated by two representative model problems. It is numerically proven that no negative effect can be experienced when the thickness is small and tends to zero.  相似文献   

9.
The influence of compressibility on the rapid pressure–strain rate tensor is investigated using the Green’s function for the wave equation governing pressure fluctuations in compressible homogeneous shear flow. The solution for the Green’s function is obtained as a combination of parabolic cylinder functions; it is oscillatory with monotonically increasing frequency and decreasing amplitude at large times, and anisotropic in wave-vector space. The Green’s function depends explicitly on the turbulent Mach number M t , given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number M g , which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Assuming a form for the temporal decorrelation of velocity fluctuations brought about by the turbulence, the rapid pressure–strain rate tensor is expressed exactly in terms of the energy (or Reynolds stress) spectrum tensor and the time integral of the Green’s function times a decaying exponential. A model for the energy spectrum tensor linear in Reynolds stress anisotropies and in mean shear is assumed for closure. The expression for the rapid pressure–strain correlation is evaluated using parameters applicable to a mixing layer and a boundary layer. It is found that for the same range of M t there is a large reduction of the pressure–strain correlation in the mixing layer but not in the boundary layer. Implications for compressible turbulence modeling are also explored.   相似文献   

10.
A body composed of a linear piezoelectric medium is considered. It is shown that the condition of local propagation for a singular hypersurface S of any given order r, with r≥1, can be expressed in terms of a suitable acoustic tensor. This tensor does not depend on the order r and coincides with the one used for plane progressive waves in the homogeneous case. Thus, just as in Linear Elasticity, the laws of propagation of such discontinuity waves are the same as those for plane progressive waves. For any r≥1 singular hypersurfaces are characteristic for the linear piezoelectric partial differential equations, whereas for r=0 singular hypersurfaces may be non-characteristic for such equations. A condition is written which characterizes the strong waves of order 0 that are characteristic. For the latter waves the aforementioned acoustic tensor can be used to express the condition of local propagation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
When studying the regular polygonal inclusion in 1997, Nozaki and Taya discovered numerically some remarkable properties of Eshelby tensor: Eshelby tensor at the center and the averaged Eshelby tensor over the inclusion domain are equal to that of a circular inclusion and independent of the orientation of the inclusion. Then Kawashita and Nozaki justified the properties mathematically. In the present paper, some other properties of a regular polygonal inclusion are discovered. We find that for an N-fold regular polygonal inclusion except for a square, the arithmetic mean of Eshelby tensors at N rotational symmetrical points in the inclusion is also equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Furthermore, in two corollaries, we point out that Eshelby tensor at the center, the averaged Eshelby tensor over the inclusion domain, and the line integral average of Eshelby tensors along any concentric circle of the inclusion are all identical with the arithmetic mean.The project supported by the National Natural Science Foundation of China (10172003 and 10372003) The English text was polished by Keren Wang.  相似文献   

12.
The yield stress of polymethylmethacrylate (PMMA) composites filled with ultrafine SiO2 particles was measured as a function of the draw temperature, rate of strain and filler content. The yield stress of the composites increased with increasing filler content and decreasing filler size. The tensile yield stress was found to be reducible with regard to draw temperature, rate of strain and filler content. At a given filler content, a master curve was obtained for the yield stress plotted versus the logarithm of the strain rate. The Arrhenius plot of the shift factors (a T ) used to produce the strain rate-temperature master curve formed a single curve for all sizes and loadings of the filler. The master curves obtained for different loadings of a filler of given size could be further reduced into a master-master curve by shifting them along the axis of strain rate, with the logarithm of the second shift factors (loga c ) proportional to the 4/5th power of the filler volume fraction (V f ). The proportionality constant and the exponent represent the extent of the filler reinforcing effect in the polymer. These values were found to be correlated with the critical surface tension of the polymers.  相似文献   

13.
岩石内天然存在长度、倾角和形态不同的裂隙,造成岩石的各向异性特征。为揭示岩石内天然随机裂隙发育特征对岩石物理力学特性的影响规律,以泥巴山隧址区采集裂隙性流纹岩为研究对象,首先对试样裂隙进行素描统计分析;然后基于Oda裂隙结构张量,获得天然随机分布裂隙的几何统计参数;最后对裂隙性流纹岩试样分别进行单轴和常规三轴压缩试验,得到不同应力路径下流纹岩的应力-应变曲线及物理力学参数。分析Oda裂隙结构张量定义的各向异性参数与试验获得的力学参数之间的规律,研究结果表明:(1)Oda裂隙结构张量适用于天然随机分布裂隙的几何统计分析,各向异性参数A(F)越大,裂隙优势方向越明显;(2)单轴压缩下,随着各向异性参数I1和A(F)的增大,流纹岩各向异性程度增大,弹性模量减小,泊松比增大;(3)常规三轴压缩下,流纹岩弹性模量和泊松比随各向异性参数改变的规律较不明显,Oda裂隙结构张量不再适用。  相似文献   

14.
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate ɛτ) equations were considered. The emphasis of this paper is focused on the effects of the ɛτ-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate of change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters, given by /ɛ, ττ, , Sk/ɛ and G/ɛ, becoming constant. Here, and τ are the production of turbulent kinetic energy k and temperature variance , respectively, ɛ and ɛτ are their respective dissipation rates, R is the mixed time scale ratio, G is the buoyant production of k and S is the mean shear gradient. Calculations show that the ɛτ-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular ɛτ-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the ɛ-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence. Received 21 April 2000 and accepted 21 February 2001  相似文献   

15.
A class of universal relations for isotropic elastic materials is described by the tensor equationTB = BT. This simple rule yields at most three component relations which are the generators of many known universal relations for isotropic elasticity theory, including the well-known universal rule for a simple shear. Universal relations for four families of nonhomogeneous deformations known to be controllable in every incompressible, homogeneous and isotropic elastic material are exhibited. These same universal relations may hold for special compressible materials. New universal relations for a homogeneous controllable shear, a nonhomogeneous shear, and a variable extension are derived. The general universal relation for an arbitrary isotropic tensor function of a symmetric tensor also is noted.  相似文献   

16.
In this paper, following Noether’s theorem we investigate the Lie point symmetries of linear micromorphic elastodynamics (linear elastodynamics with microstructure). Conservation and balance laws of linear, micromorphic elastodynamics are derived. We generalize the J, L and M integrals for this theory. In addition, we give the Eshelby stress tensor, pseudomomentum vector, field intensity vector, Hamiltonian, angular momentum tensor and scaling flux generalized to micromorphic elastodynamics.   相似文献   

17.
A method for the explicit determination of the polar decomposition (and the related problem of finding tensor square roots) when the underlying vector space dimension n is arbitrary (but finite), is proposed. The method uses the spectral resolution, and avoids the determination of eigenvectors when the tensor is invertible. For any given dimension n, an appropriately constructed van der Monde matrix is shown to play a key role in the construction of each of the component matrices (and their inverses) in the polar decomposition.  相似文献   

18.
Summary Let be a simply connected region of an Einstein-Riemann space that is filled by the trajectories of a time-oriented normal congruence K. The most general form of the momentum-energy tensor is determined under the assumption that we know the deformation of the metric tensor under transport along K. The time-like eigenvector and associated eigenvalue of this momentum-energy tensor are examined.This paper is part of the RAND-Sponsored-Research studies in Epitactic Cosmography.  相似文献   

19.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

20.
The objective of this article is to highlight certain features of a number of coefficients that appear in models of phenomena of transport in anisotropic porous media, especially the coefficient of dispersion the second-rank tensor D ij , and the dispersivity coefficient, the fourth-rank tensor a ijkl , that appear in models of solute transport. Although we shall focus on the transport of mass of a dissolved chemical species in a fluid phase that occupies the void space, or part of it, the same discussion is also applicable to transport coefficients that appear in models that describe the advective mass flux of a fluid and the diffusive transport of other extensive quantities, like heat. The case of coupled processes, e.g. the simultaneous transport of heat and mass of a chemical species, are also considered. The entire discussion will be at the macroscopic level, at which a porous medium domain is visualized as a homogenized continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号