首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and an explicit expression is found, for large time. Singularity theory, usually used for combustion problems, is applied to the large time expression for the solitary wave tail. Analytical results are obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks, in the solitary wave tail. Two examples, the near-continuum limit of a discrete NLS equation and an explicit numerical scheme for the NLS equation, are considered in detail. For the discrete NLS equation it is found that three qualitatively different types of solitary wave tail can occur, while for the explicit finite-difference scheme, only one type of solitary wave tail occurs. An excellent comparison between the perturbation solution and numerical simulations, for the solitary wave tail, is found for both examples.  相似文献   

2.
The Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated.  相似文献   

3.
本文研究有限水深两层流中孤立波的三阶近似理论,并考虑了自由表面对孤立波的影响,运用坐标变形方法得到了三阶内孤立波的发展方程,求得波速的解析表达式。对方程进行了数值计算,得到了几种参数下三阶解曲线,指出自由表面对波型和波速的影响是二阶的。计算表明三阶解对一阶、二阶解有明显的改进,使其更加接近试验结果。  相似文献   

4.
With symbolic computation, under investigation in this paper is the perturbed Korteweg–de Vries equation for the nonlocal solitary waves and arrays of wave crests. Via the Hirota method, the bilinear form, Bäcklund transformation and superposition formulae are obtained. N-soliton solutions in terms of the Wronskian are constructed. Asymptotic analysis is used to analyze the collision dynamics, and figures are plotted to illustrate the influence of the perturbation. We find that the perturbation affects the propagation velocities of the solitons, but does not affect the amplitudes and widths of the solitons. Besides, the solitonic collisions turn out to be elastic.  相似文献   

5.
Exact periodic solitary wave solutions for Kadomtsev-Petviashvili equation are obtained by using the Hirota bilinear method. The result shows that there exists periodic solitary waves in the different directions for (2 + 1)-dimensional Kadomtsev-Petviashvili equation.  相似文献   

6.
本文研究带有高阶项、时间色散项和非线性系数项的复杂(3+1)-维高阶耦合非线性Schrödinger(3DHCNLSE)方程的精确解. 首先,利用相似变换将非自治的方程转化为自治的耦合Hirota 方程; 其次,采用Darboux 变换方法得到耦合Hirota 方程带有任意常数的有理解; 最后,给出变系数3DHCNLSE方程带有任意常数的1 阶和2 阶多畸形波解. 本文获得的(3+1)-维(3D)多畸形波解可以用来描述深海动力学波和非线性光学纤维中出现的一些物理现象.  相似文献   

7.
An attempt has been made to obtain exact analytical traveling wave solution or simple wave solution of higher-order Korteweg–de Vries (KdV) equation by using tanh-method or hyperbolic method. The higher-order equation can be derived for magnetized plasmas by using the reductive perturbation technique. It is found that the exact solitary wave solution of higher-order KdV equation is obtained by tanh-method. Using this method, different kinds of nonlinear wave equations can be evaluated. The higher-order nonlinearity and higher-order dispersive effect can be observed from the solutions of the equations. The method is applicable for other nonlinear wave equations.  相似文献   

8.
By employing auxiliary equation method and Hirota bilinear method, the quantum Zakharov-Kuznetsov equation which arises in quantum magnetoplasma is investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of multidimensional nonlinear ion-acoustic waves in dense magnetoplasma.  相似文献   

9.
The Hirota bilinear method is prepared for searching the diverse soliton solutions for the fractional generalized Calogero‐Bogoyavlenskii‐Schiff‐Bogoyavlensky‐Konopelchenko (CBS‐BK) equation. Also, the Hirota bilinear method is used to finding the lump and interaction with two stripe soliton solutions. Interaction among lumps, periodic waves, and multi‐kink soliton solutions will be investigated. Also, the solitary wave, periodic wave, and cross‐kink wave solutions will be examined for the fractional gCBS‐BK equation. The graphs for various fractional order α are plotted to contain 3D plot, contour plot, density plot, and 2D plot. We construct the exact lump and interaction among other types solutions, by solving the under‐determined nonlinear system of algebraic equations for the associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed. The existence conditions are employed to discuss the available got solutions.  相似文献   

10.
In this paper, first we survey some recent advances in the study of traveling wave solutions to the Burgers-Korteweg-de Vries equation and some comments are given. Then, we study a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities. A qualitative analysis to a two-dimensional autonomous system which is equivalent to the Burgers-KdV-type equation is presented, and indicates that under certain conditions, the Burgers-Korteweg-de Vries-type equation has neither nontrivial bell-profile solitary waves, nor periodic waves. Finally, a solitary wave solution is obtained by means of the first-integral method which is based on the ring theory of commutative algebra.  相似文献   

11.
In this paper, we considered the multiple rogue wave solutions of a (3+1)-dimensional Hirota bilinear equation by using a symbolic computation approach. Based on the bilinear form of this equation, the first-order rogue waves, the second-order rogue waves and the third-order rogue waves are presented. Moreover, some basic properties of multiple rogue waves and their collision structures are explained by drawing the three dimensional plot.  相似文献   

12.
The paper is devoted to study of traveling waves of nonlinear Schrödinger equation with distributed delay by applying geometric singular perturbation theory, differential manifold theory and the regular perturbation analysis for a Hamiltonian system. Under the assumptions that the distributed delay kernel is strong general delay kernel and the average delay is small, we first investigate the existence of solitary wave solutions by differential manifold theory. Then by utilizing the regular perturbation analysis for a Hamiltonian system, we explore the periodic traveling wave solutions.  相似文献   

13.
非线性发展方程新的显式精确解   总被引:6,自引:0,他引:6  
借助Mathematica系统,采用三角函数法和吴文俊消元法,本文获得了著名的2+1维KP方程的若干精确解,其中包括新的精确解和孤波解.在此基础上,进而得到著名KdV方程、Hirota-Satsuma方程和耦合KdV方程的一些精确解.  相似文献   

14.
The Ostrovsky equation is a modification of the Korteweg-de Vries equation which takes account of the effects of background rotation. It is well known that the usual Korteweg-de Vries solitary wave decays and is replaced by radiating inertia gravity waves. Here we show through numerical simulations that after a long-time a localized wave packet emerges as a persistent and dominant feature. The wavenumber of the carrier wave is associated with that critical wavenumber where the underlying group velocity is a minimum (in absolute value). Based on this feature, we construct a weakly nonlinear theory leading to a higher-order nonlinear Schrödinger equations in an attempt to describe the numerically found wave packets.  相似文献   

15.
We study peaked wave solutions of a generalized Hyperelastic-rod wave equation describing waves in compressible hyperelastic-rods by using the bifurcation theory of planar dynamical systems and numerical simulation method. The existence domain of the peaked solitary waves are found. The analytic expressions of peaked solitary wave solutions are obtained. Our numerical simulation and qualitative results are identical.  相似文献   

16.
A generalized method, which is called the generally projective Riccati equation method, is presented to find more exact solutions of nonlinear differential equations based upon a coupled Riccati equation. As an application of the method, we choose the higher-order nonlinear Schrodinger equation to illustrate the method. As a result more new exact travelling wave solutions are found which include bright soliton solutions, dark soliton solution, new solitary waves, periodic solutions and rational solutions. The new method can be extended to other nonlinear differential equations in mathematical physics.  相似文献   

17.
An approach, which allows us to construct specific closed-form solitary wave solutions for the KdV-like water-wave models obtained through the Boussinesq perturbation expansion for the two-dimensional water wave problem in the limit of long wavelength/small amplitude waves, is developed. The models are relevant to the case of the bi-directional waves with the amplitude of the left-moving wave of O(ϵ) (ϵ is the amplitude parameter) as compared with that of the right-moving wave. We show that, in such a case, the Boussinesq system can be decomposed into a system of coupled equations for the right- and left-moving waves in which, to any order of the expansion, one of the equations is dependent only on the (main) right-wave elevation and takes the form of the high-order KdV equation with arbitrary coefficients whereas the second equation includes both elevations. Then the explicit solitary wave solutions constructed via our approach may be treated as the exact solutions of the infinite-order perturbed KdV equations for the right-moving wave with the properly specified high-order coefficients. Such solutions include, in a sense, contributions of all orders of the asymptotic expansion and therefore may be considered to a certain degree as modelling the solutions of the original water wave problem under proper initial conditions. Those solitary waves, although stemming from the KdV solitary waves, possess features found neither in the KdV solitons nor in the solutions of the first order perturbed KdV equations.  相似文献   

18.
Propagation of two‐dimensional nonlinear ion‐acoustic solitary waves and shocks in a dissipative quantum plasma is analyzed. By applying the reductive perturbation theory, the two‐dimensional ion acoustic solitary waves in a dissipative quantum plasma lead to a nonlinear Kadomtsev–Petviashvili–Burgers (KPB) equation. By implementing extended direct algebraic mapping, extended sech‐tanh, and extended direct algebraic sech methods, the ion solitary traveling wave solutions of the two‐dimensional nonlinear KPB equation are investigated. An analytical as well as numerical solution of the two‐dimensional nonlinear KPB equation is obtained and analyzed with the effects of external electric field and ion pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The Hirota bilinear method is a powerful tool for solving nonlinear evolution equations. Together with the linear superposition principle, it can be used to find a special class of explicit solutions that correspond to complex eigenvalues of associated characteristic problems. These solutions are known as complexiton solutions or simply complexitons. In this article, we study complexiton solutions of the the Hirota‐Satsuma‐Ito equation which is a (2 + 1)‐dimensional extension of the Hirota‐Satsuma shallow water wave equation known to describe propagation of unidirectional shallow water waves. We first construct hyperbolic function solutions and consequently derive the so‐called complexitons via the Hirota bilinear method and the linear superposition principle. In particular, we find nonsingular complexiton solutions to the Hirota‐Satsuma‐Ito equation. Finally, we give some illustrative examples and a few concluding remarks.  相似文献   

20.
Based on a suitable ansätz approach and Hirota’s bilinear form, kink solitary wave, rogue wave and mixed exponential–algebraic solitary wave solutions of (2+1)-dimensional Burgers equation are derived. The completely non-elastic interaction between kink solitary wave and rogue wave for the (2+1)-dimensional Burgers equation are presented. These results enrich the variety of the dynamics of higher dimensional nonlinear wave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号