首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optimal design strategy for spiral-wound membrane networks based on an approximate permeator model and a mixed-integer nonlinear programming (MINLP) solution strategy is proposed. A general permeator system superstructure is used to embed a very large number of possible network configurations. The superstructure allows the development of a MINLP design strategy which simultaneously optimizes the permeator configuration and operating conditions to minimize an objective function which approximates the total annual process cost. Case studies for the separation of CO2/CH4 mixtures in natural gas treatment and enhanced oil recovery are presented. Permeator configurations are derived for different number of separation stages for both continuous and discrete membrane areas. The proposed approach provides an efficient methodology for the preliminary design of multi-stage membrane separation systems for binary gas mixtures.  相似文献   

2.
A new improvement based on outlet fractionation and feedback has been developed for simulated moving bed (SMB) chromatography. In this contribution, this fractionation and feedback SMB (FF-SMB) concept is extended to the general scenario which integrates a simultaneous fractionation of both outlet streams. A model-based optimization approach, previously adopted to investigate single fractionation, is extended to consider this flexible fractionation policy. Quantitative optimization studies based on a specific separation problem reveal that the double fractionation is the most efficient operating scheme in terms of maximum feed throughput, while the two existing single fractionation modes discussed in our previous study are also significantly superior to the conventional SMB operation. The advantages of the double fractionation extension are further demonstrated in terms of several more detailed performance criteria. In order to evaluate the applicability of the fractionation and feedback modification, the effect of product purity, adsorption selectivity, column efficiency and column number on the relative potential of FF-SMB over SMB is examined.  相似文献   

3.
A new continuous chromatographic process (Varicol) has been presented recently. Its basic principle consists, in contrast to the traditional simulated moving bed (SMB) technology, of an asynchronous shift of the inlet/outlet lines in a multi-column system with a recycle loop. Due to the stronger influence of the discrete dynamics on the plant behavior, the design of a Varicol process requires the use of model-based optimization to take advantage of the very high flexibility of this process. The equilibrium theory which has been successfully applied to SMB by many practitioners fails to predict the region of complete separation accurately. In this paper, we present a rigorous model-based optimization framework, which can handle the SMB and the novel Varicol process in a systematic manner. The feasibility of the approach is demonstrated by the separation of a mixture of propranolol isomers which exhibits a highly non-linear multi-component adsorption behavior. Experimental results are presented and discussed.  相似文献   

4.
The Simulated Moving Bed (SMB) concept has been applied to the separation of different mixtures as a continuous counter current separation process, avoiding several problems related with solid motion. The aim of this work is to present some relevant examples of SMB separations corresponding to the two major ages in the use of the SMB concept, here named “old” and “new” applications. The “old” applications of SMB technology in the petrochemical industry are still important, with large and highly productive units; and the “new” applications of the second “age” of SMB concept are from the fine chemical, pharmaceutical and biochemistry areas, associated with the demand of high purity products during the last 10 years. Different examples are presented for different ages: a UOP Parex ® process for the “old”, modelled with the equivalent True Moving Bed (TMB) approach; and a chiral resolution for the “new”, modelled by the real SMB model. Some of the latest developments are also mentioned: the non conventional techniques as the Varicol ® process, PowerFeed, Modicon, M3C or Enriched Extract-SMB (EE-SMB), MultiFeed (MF), Outlet Streams Swing (OSS) or Pseudo-SMB, involving considerable changes in the SMB concept itself. The use of the last optimization/modelling packages for the development of design techniques, either at the conception stage as well as for performance improvements of existing units is emphasized.  相似文献   

5.
One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).  相似文献   

6.
In this paper we draw on two stochastic optimization techniques, Simulated Annealing and Genetic Algorithm (SAGA), to create a hybrid to determine the optimal design of nonlinear Simulated Moving Bed (SMB) systems. A mathematical programming model based on the Standing Wave Design (SWD) offers a significant advantage in optimizing SMB systems. SAGA builds upon the strength of SA and GA to optimize the 16 variables of the mixed-integer nonlinear programming model for single- and multi-objective optimizations. The SAGA procedure is shown to be robust with computational time in minutes for single-objective optimization and in a few hours for a multi-objective optimization, which is comprised of more than one hundred points.  相似文献   

7.
We present a methodology for the simultaneous optimization of pressure and network configurations for gas separation membrane permeators. The methodology targets and refines pressure clusters for efficient operation of membrane networks and follows a three-stage strategy. The first stage produces a pressure target curve (PTC) that allows the identification of Pareto optimal pressure cluster combinations. This is followed by a second stage, where the different optimal pressure ratios are used in an optimal search for process structures to identify the performance of the individual clusters. The third stage processes the information generated in the first two stages in a generalized process superstructure model. Throughout the methodology, a modified process synthesis model for membrane network optimization and design is employed which can be optimized robustly using the simulated annealing algorithm. Three illustrative examples are presented to demonstrate the proposed methodology for simultaneous pressure and layout optimization.  相似文献   

8.
Simulated moving bed (SMB) is a cost-efficient separation technique that offers high productivity and low solvent consumption. SMB has gained importance in the pharmaceutical and fine chemical industry to perform complex separation tasks. However, an open and challenging problem is the optimal, robust operation of the SMB process. We have developed a control scheme that integrates the optimization and control of the SMB unit. A significant feature of the controller is that only minimal information of the system has to be provided, i.e. the linear adsorption behavior of the mixture to be separated and the average void fraction of the columns. Therefore, a full characterization of the adsorption behavior of the mixture and the columns is no longer required. In this ‘cycle to cycle’ control scheme, the measurements, optimization and control actions are performed once in every cycle. This paper presents simulation results of the control scheme applied to the separation of binary mixtures characterized by generalized Langmuir isotherms. The results are presented and analyzed in the frame of the triangle theory that has been recently extended to encompass these types of isotherms. Besides, online optimum performance of the SMB unit is compared with off-line optimization carried out using genetic algorithm. The results show that the controller fulfills the product and process specifications while operating the SMB unit optimally, regardless of the different types of Langmuir isotherms that the systems exhibit.  相似文献   

9.
The combination of two techniques, simulated moving bed (SMB) and supercritical fluid chromatography (SFC), leads to an apparatus with unique features. Besides the known advantages of the SMB process, like reduced solvent consumption and its continuity, the use of supercritical carbon dioxide as the mobile phase offers an easy product recovery by depressurizing the supercritical fluid. Details of a SMB-SFC plant are presented for the first time. Due to the large number of process parameters a simulation of the SMB process is necessary to achieve optimal operating conditions. The most important thermodynamic information for a SMB process is the adsorption isotherms. Therefore, isotherms for two phytol isomers are measured and correlated. A fast dynamic model for the simulation of SMB is used to calculate the region of complete separation taking different column configurations and the compressibility of the mobile phase into account.  相似文献   

10.
Simulated Moving Bed (SMB) was developed as a realization of continuous countercurrent operation of chromatographic separation. An SMB unit consists of several columns of the same length connected in series, where feed and desorbent are supplied and extract and raffinate are withdrawn continuously. This operation is repeated by shifting the supply/withdrawal points at a regular interval, making the operation symmetric. In this study, we explore asymmetric operation and design through a full-cycle optimization model, where the operation of the entire cycle is described within a nonlinear programming (NLP) problem and the Partial Differential Algebraic Equations (PDAEs) are fully discretized both in temporal and spatial domains. The NLP problem is implemented within the AMPL modeling environment and is solved using IPOPT, an interior-point NLP solver. We found that this problem is solved efficiently, and introducing a full-cycle formulation has the potential to improve the performance of SMB, as shown through single and multi-objective optimization studies.  相似文献   

11.
A possible way to improve the separation performance of simulated moving bed (SMB) units is to change the internal and external liquid flow-rates during the switching period. This operation mode, referred to as PowerFeed, is examined in this work through a model analysis. Similar to the Varicol process, which allows for the asynchronous movement of the ports, the PowerFeed process exhibits more degrees of freedom than the classical SMB process and therefore allows more room for optimization. Using an optimization technique based on a genetic algorithm, all three processes have been optimized for a few case studies in order to determine their relative potentials. It is found that PowerFeed and Varicol provide substantially equivalent performances, which are however significantly superior to those of the classical SMB process.  相似文献   

12.
The resolution of racemic gas mixtures by simulated moving bed (SMB) and pressure swing adsorption (PSA) is investigated by dynamic simulation and optimization. Enantiomer separation of inhalation anesthetics is important because there is evidence that the purified enantiomers may have different pharmacological properties than the racemate. The model parameters reported in an experimental investigation performed elsewhere are used to study the feasibility of this separation using SMB and PSA configurations. Both processes were modeled in gPROMS® as systems of differential algebraic equations. Operating conditions are optimized such that the feed throughput and product recovery for each process were maximized subject to equal constraints on the pressures and superficial gas velocities. SMB was found to be capable of resolving racemic feed mixtures with purity and recovery exceeding 99%. On the other hand, PSA was also able to provide a single purified enantiomer with low recovery of about 30% which may limit its application to enantiomer separation. Nevertheless, PSA consumes less desorbent, and achieves higher throughput at the sacrifice of lower recovery.  相似文献   

13.
Optimization strategy for simulated moving bed systems   总被引:2,自引:0,他引:2  
Simulated moving bed (SMB) systems are of rising interest in the purification of pharmaceuticals or specialty chemicals (racemic mixtures, proteins, organic acids, etc.). This is particularly due to their advantage in solvent reduction, obtained productivity and purities as well as investment costs in comparison to eluent chromatography. This paper evolved from the need for a readily available algorithm in order to find optimal operating conditions for SMB chromatography systems with nonlinear or coupled adsorption isotherms. The herein developed algorithm is based on a semi-deterministic two-step approach. First, optimal operating conditions with regard to an objective function are found by knowing adsorption measurements only. In a second step actual SMB results are used to adapt the initial isotherm measurements and match the simulation with the experiment. The algorithm is verified on a bench-scale SMB unit applied for the separation of a racemic epoxide with Chiralcel-OD as stationary phase. The developed algorithm improved the productivity of the investigated experimental design by 24%.  相似文献   

14.
One of the modified simulated moving bed (SMB) processes, the intermittent SMB (I-SMB) process, has been recently analyzed theoretically [1] and its superior performance compared to the conventional SMB process has been demonstrated at a rather low total feed concentration through experiments and simulations [2]. This work shows that the I-SMB process outperforms the conventional SMB process also at high feed concentration where the species are clearly subject to a nonlinear adsorption isotherm. In the case of the separation of the Tröger's base's enantiomers in ethanol on ChiralPak AD, the two processes operated in a six-column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration (one column in each section) are compared at high feed concentration through both experiments and simulations. Even under nonlinear conditions the four column I-SMB process can successfully separate the two enantiomers achieving purity levels as high as the two six column processes and exhibiting better productivity.  相似文献   

15.
The intermittent simulated moving bed (I-SMB) process is a modification of the conventional SMB process that has been recently analyzed theoretically [1]. Here, we present a comparative analysis of the two processes, each operated in a six column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration. Experiments are carried out on a properly modified laboratory unit to separate racemic mixtures of the enantiomers of Tröger’s base in ethanol on ChiralPak AD at a total feed concentration of 1 g/L. Simulations are carried out for the same system using the equilibrium dispersive model and a bi-Langmuir isotherm, whose parameters have been preliminarily estimated from pulse and breakthrough experiments. Experiments and simulations are fully consistent and demonstrate that the four-column I-SMB process (but not the four-column SMB process) can separate the two enantiomers at very high purity and achieve a productivity twice as large as that of the six-column I-SMB and conventional SMB processes with the same solvent consumption.  相似文献   

16.
Simulated moving bed (SMB) chromatography, a continuous multi-column chromatographic process, has become one of the preferred techniques for the separation of the enantiomers of a chiral compound. Several active pharmaceutical ingredients, including blockbuster drugs, are manufactured using the SMB technology. Compared to single column preparative chromatography, SMB separations achieve higher productivity and purity, while reducing the solvent consumption. The SMB technology has found applications both at small and large scales. Design methods have been developed for robust operation and scale-up, using data obtained from analytical experiments. In the last few years, rapid developments have been made in the areas of design, improved process schemes, optimization and robust control. This review addresses these developments, as well as both the fundamentals of the SMB science and technology and some practical issues concerning the operation of SMB units. Particular emphasis is placed on the consolidation of the “triangle theory”, a design tool that is used both in the academia and industry for the design of SMB processes.  相似文献   

17.
Kim K  Kim JI  Park H  Koo YM  Lee KS 《Journal of chromatography. A》2011,1218(38):6843-6847
A bi-level optimizing control scheme originally proposed for a simulated moving bed (SMB) with linear isotherms has been extended to an SMB with nonlinear isotherms. Cyclic steady state optimization is performed in the upper level to determine the optimum switching period and time-varying feed/desorbent flow rates, and repetitive model predictive control is run in the lower level for purity regulation, taking the decision variables from the upper level as feed-forward information. Experimental as well as numerical study for an SMB process separating a high-concentration mixture of aqueous L-ribose and L-arabinose solutions showed that the proposed scheme performs satisfactorily against various disturbances. In contrast, an alternative scheme based on an SMB model with linear isotherms showed a limitation in the control performance; this scheme was apt to fail in purity regulation.  相似文献   

18.
This paper presents an analysis of a hybrid process consisting of simulated moving bed (SMB) chromatography and crystallization and studies its performance for the separation of the Tr?ger's base enantiomers. The SMB is simulated using a detailed model including column efficiency, thus, implying a proper evaluation of the effect of column size on column efficiency and separation performance. The crystallization operations are accounted for through material balances, assuming equilibrium between enantiopure crystals and mother liquor. A genetic algorithm is used to optimize the combined process, using proper definitions of objective functions. Multi-objective optimization of this hybrid process for productivity and evaporation cost in terms of operating parameters, column length, and SMB feed concentration shows an optimum SMB purity value as a trade off between increased SMB performance and recycle of the mother liquor.  相似文献   

19.
A new optimization based adaptive control strategy for simulated moving beds (SMBs) is proposed. A linearized reduced order model, which accounts for the periodic nature of the SMB process, is used for online optimization and control. The manipulated variables are the four inlet flow rates, the outputs are the raffinate and extract concentrations. Concentration measurements at the raffinate and extract outlets are used as the feedback information. The state estimate from the periodic Kalman filter is used for the prediction of the outlet concentrations over a chosen horizon. Predicted outlet concentrations are the basis for the calculation of the optimal input adjustments, which maximize the productivity and minimize the desorbent consumption subject to constraints on product purities. The realization of this concept is discussed and the implementation on a virtual eight column SMB platform is assessed, in the case of binary linear systems. For a whole series of typical plant disturbances it is shown that the proposed approach is effective in minimizing off-spec products and in achieving optimal SMB operation, also in the case where there are significant model uncertainties.  相似文献   

20.
This work analyzes the performance of the SMB and the column chromatography processes for two different case studies: the first stage of the plasmid DNA (pDNA) polishing, and the Tr?ger's base enantiomer separation, in which the adsorption isotherms are linear and non-linear, respectively. Simulation tools are used together with an optimization routine (Non-Sorting Genetic Algorithm (NSGA)) in order to find the optimum operating conditions leading to maximum productivity and minimum solvent consumption; the optimum solution for each of the processes is a curve on the productivity-solvent consumption plane, the so-called Pareto set. The comparison between the column and the SMB processes is based on the relative position of the two Pareto sets calculated at equal conditions and for the same final purity and recovery of the target species. The results show that SMB is superior to column chromatography in the two case studies investigated, i.e. in the case of the linear isotherm (pDNA), the productivity gain is up to a factor two for a given value of the solvent consumption. Furthermore, the flexibility of the SMB operation is larger, since the Pareto sets are flatter and they prolong into regions of the productivity-solvent consumption plane that are not accessible with the column chromatography process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号