首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
长波敏化发光铕配合物纳米粒子的制备与表征   总被引:2,自引:0,他引:2  
以牛血清白蛋白(BSA)为保护剂, 利用沉淀法制备了平均粒径为35 nm的Eu(tta)3dpbt (dpbt = 2-(N,N-二乙基苯胺-4-基)-4,6-二(3,5-二甲基吡唑-1-基)-1,3,5-三嗪, tta = 噻吩甲酰三氟丙酮负离子)荧光纳米粒子. BSA保护Eu(tta)3dpbt纳米粒子在水中分散稳定性高, 光稳定性好, 长波敏化发光性能优良. 其在可见光区激发峰位于415 nm, 激发峰尾部延展至470 nm, 发光量子产率为0.20 (λex=415 nm, 25 ℃). 在近红外双光子激发下可发出纯正的红光, Eu(tta)3dpbt纳米粒子最大双光子激发作用截面为2.4×105 GM (λex=830 nm, 1 GM=10-50 cm4·s·photo-1·particle-1).  相似文献   

2.
将Eu(tta)3dpbt (dpbt: 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine; tta:thenoyltrifluoroacetonato)包埋在甲基丙烯酸甲酯-苯乙烯共聚物、正辛基三甲氧基硅及其水解缩合产物组成的杂化基质中, 制备了Eu(tta)3dpbt 质量分数为40%的荧光纳米粒子, 其平均粒径为45 nm. 所制备的发光纳米粒子在水中分散稳定性高、光稳定性好、细胞毒性低、长波敏化Eu3+发光性能优良, 适宜作为生物分析的发光标记物. 所制备的发光纳米粒子的可见区激发峰位于415 nm, 激发峰尾部延展至475 nm, 其发光量子产率为0.31(λex=415 nm, T=23 ℃), 最大双光子激发作用截面为5.0×105 GM (λex=830 nm, 1 GM=10-50 cm4·s·photo-1×particle-1). 以转铁蛋白修饰上述发光纳米粒子表面制备的纳米生物探针被成功应用于活的HeLa肿瘤细胞的特异性标记和双光子激发Eu3+发光成像.  相似文献   

3.
Long-wavelength-sensitized luminescent materials are desired for bio-detection. In this paper, we prepared a new kind of luminescent europium nanoparticles by a co-precipitation-condensation method. The luminescent europium complex Eu(tta)3.bpt (tta = thenoyltrifluoroacetonate; bpt = 2-(N,N- di-ethylanilin-4-yl)-4,6-bis(pyrazol-l-yl)-l,3,5-triazine) was used as the active material, being encapsulated in the nanoparticles formed from 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTS) and poly(styrene-co-methyl methacrylate) [P(ST-co-MMA)]. The prepared nanoparticles not only can be well dispersed in water but also were of high photostability. Importantly, the nanoparticles displayed maximal excitation wavelength at 425 nm as well as an extended excitation wavelength up to 480 nm and a quantum yield for Eu3+ luminescence of 0.22 (λex= 425 nm, room temperature).  相似文献   

4.
The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.  相似文献   

5.
This work explores the sensitization of luminescent lanthanide Tb(3+) and Eu(3+) cations by the electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb(3+) and Eu(3+). The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens. Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb(3+) and Eu(3+) in ZnS nanoparticles are different; namely, Tb(3+) acts as a hole trap, whereas Eu(3+) acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe.  相似文献   

6.
Polystyrene nanoparticles doped with a luminescent europium complex, Eu(tta)(3)phen, are prepared by miniemulsion polymerization. The influence of the complex on the miniemulsion polymerization is investigated by the systematic variation of the initial concentration of Eu(tta)(3)phen from 2 to 7 wt% relatively to styrene. A maximum doping level of about 2% by weight in the final particles can be achieved. At higher doping levels, destabilization of the miniemulsion leads to a loss of reproducibility with respect to both the degree of conversion and the final Eu content of the particles. Doped nanoparticles of varying diameter, ranging from 19 to 94 nm, are successfully prepared. Steady-state and time-resolved luminescence measurements indicate that the luminescence properties of Eu(tta)(3)phen in the doped latexes are unchanged from those found in THF solution. Aqueous dispersions of the doped particles exhibit characteristic red emission under UV light irradiation. The luminescence intensity increases linearly with Eu(tta)(3)phen content, indicating the absence of self-quenching despite the relatively high local concentrations within the particles.  相似文献   

7.
The sensitization of Eu(III) and Tb(III) by ethylenediaminetetraaceticacid (EDTA)-derivatized tryptophan (Trp), 7-azatryptophan (7AW) and 5-hydroxytryptophan (5HW) has been examined. These Trp analogs were utilized in the present study because they can be incorporated into proteins in place of native Trp residues and because they absorb strongly beyond 305 nm (where Trp absorbance goes to zero), allowing selective excitation of such species in the presence of other Trp-containing proteins. All three indole derivatives were able to sensitize Tb(III) luminescence, with the relative sensitization being in the order Trp > 5HW > 7AW. On the other hand, only the 7AW-EDTA complex was able to sensitize Eu(III) luminescence, likely owing to a better spectral overlap between 7AW emission and Eu(III) absorbance. The sensitized emission of Tb(III) and Eu(II) displayed the expected long emission lifetimes at 545 nm [for Tb(III)] and 617 nm [for Eu(III)], indicating that long-lifetime lanthanide emission could be produced using nonnatural amino-acid donors. Thus, 7AW- and 5HW-sensitized lanthanide emissions should prove to be useful in biophysical studies, such as the use of fluorescence energy transfer to probe biomolecular interactions in vivo.  相似文献   

8.
Ag colloidal nanoparticles coated with Eu(TTA)3 · 2H2O complexes were prepared, and it was found that Eu(TTA)3 · 2H2O complexes J-aggregate was formed on the surface of Ag nanoparticles according to a red shift (18.2 nm) in UV–Vis spectra. However, there had similar excitation wavelength, which was attributed to existence of Ag nanoparticles. Highly luminescent properties of Ag colloidal nanoparticles were observed, and it was believed to result from low energy transfer between Eu(III) complexes and Ag and the large electromagnetic field arising from the excitation of surface plasmon polariton of Ag nanoparticles.  相似文献   

9.
We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. These hybrid nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and photoluminescence spectroscopic techniques. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanide Eu(3+) and Tb(3+) ions. Furthermore, the functionalized nanomaterials can be turned to white light materials after annealing at high temperature.  相似文献   

10.
The luminescent nanoparticles were prepared by encapsulating the [LnL4]? (Ln = Eu, Tb; L = BTFA, HFAA, TTFA, TFAA) complexes anion into the silicon framework. We firstly synthesized a series of novel siloxy-bearing lanthanide complex precursor, and then encapsulated them into the silica sphere by a modified Stöber process. As a result, four europium and two terbium tetrakis β-diketonate complexes functionalized silica sphere nanoparticles were obtained and characterized in detail using Fourier transform infrared spectra, X-ray diffraction, scanning electronic microscope, thermogravimetric analysis, luminescence excitation and emission spectroscopy, luminescence lifetime measurements, and diffuse reflectance UV–Vis spectroscopy. The result shows that these luminescent nanoparticles maintain the distinctive luminescence character of lanthanide chelate including broad excitation spectra, line-like emission spectra, high quantum efficiency, and long luminescent lifetime, which makes them great potential application in the synthesis of luminescent nanoparticle.  相似文献   

11.
Generation 3 PAMAM dendrimers functionalized with 2,3-naphthalimide chromophoric groups on the end branches were synthesized, and the formation of Eu3+ polymetallic complexes was investigated. The luminescence properties of these complexes upon binding were fully characterized. On addition of Eu3+ to the dendrimer solution, lanthanide luminescence appears. The formation of a luminescent species corresponding to a dendrimer:lanthanide ratio of 1:8 was determined by luminescence batch titration and indicated by the maximum of Eu3+ emission. This indicates an overall average coordination number of 7.5 around each lanthanide metal cation. This is the first report of such characterization in the literature. Luminescence lifetimes indicate that the metal cation is well protected from nonradiative deactivation by the dendritic structure. Despite the limited efficiency of the sensitization of Eu3+, the absolute quantum yield being 0.0006, the good protection of the eight lanthanide cations bound in the dendrimer structure and the high absorptivity leads to the red emission from Eu3+ that is easily observed in solution under irradiation with 354 nm UV light.  相似文献   

12.
The photophysical properties of 4-naphthalen-1-yl-benzoic acid ligands and their Eu(III)-cored complexes were systematically investigated to elucidate the effective energy-transfer pathway in luminescent lanthanide complexes. A series of 4-naphthalen-1-yl-benzoic acid ligands, such as 4-naphthalen-1-yl-benzoic acid (NA-1), 4-[4-(4-methoxyphenyl)-naphthalen-1-yl]-benzoic acid (NA-2), and 4-{4-[4-(4-methoxyphenyl)-naphthalen-1-yl]-benzyloxy}-benzoic acid (NA-3), were synthesized and utilized for the synthesis of their Eu(III)-cored complexes, corresponding to NAC-1, NAC-2, and NAC-3. The fluorescence spectra of NA-1 and NA-2 show large Stokes shifts with increasing solvent polarity. These large Stokes shifts might be dominantly due to the formation of an intramolecular charge transfer (ICT) complex in the excited state. Also, the intensive luminescence of the Eu(III) ions by the photoexcitation of the ligand in NAC-1 and NAC-2 in polar solvents supports that the energy transfer from the ligand to the Eu(III) ion takes place efficiently. In the case of NA-3, which has a -CH2OPh- group that acts as a blocking group, there is no dependence of the fluorescence spectrum on the solvent nature and no luminescence of the Eu(III) ions by the photoexcitation of the ligand, indicating no formation of the ICT state. This can be due to the fact that the formation of the ICT state in NA-3 was prevented because the -OCH2- group acts as a blocking group by interrupting the pi-conjugation between the benzoic acid and the naphthalene unit. From these photophysical studies, we suggest that the ICT state plays a very important role in the energy-transfer pathway from the ligand to the Eu(III) ion. To our best knowledge, this is the first demonstration of sensitized emission of luminescent lanthanide complexes based on 4-naphthalen-1-yl-benzoic acid derivatives by the charge-transfer process.  相似文献   

13.
Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein, we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn(2+). This europium (Eu(3+)) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn(2+). Upon addition of Zn(2+) to a solution of [Eu-7], the luminescence of Eu(3+) is strongly enhanced, with high selectivity for Zn(2+) over other biologically relevant metal cations. One of the important advantages of [Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as compared with previously reported Zn(2+)-sensitive luminescent lamthanide sensors, whose excitation wavelength is at too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn(2+) changes in living HeLa cells was confirmed. This novel Zn(2+)-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanide chemosensors for biological applications.  相似文献   

14.
The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.  相似文献   

15.
Works concerning the application of nonradiative transfer of electronic excitation energy to investigation into nanostructures of lanthanide complexes in aqueous solutions are surveyed. The effect of the formation of nanosized structures on the quenching of energy donors Ln(III) ions by acceptor ions in concentrated chloride solutions of structuring ions (Li(I), Ca(II)) was discussed. The columinescence phenomenon observed in aqueous solutions of lanthanide chelates was considered. It was shown that the enhancement of luminescence Eu(III) and Tb(III) complexes in water in the presence of excess β-diketones with an admixture of other Ln(III) ions, primarily Gd(III), (columinescence) is due to sensitization via energy transfer over triplet levels of the ligands in the nanostructures formed under these conditions and to the weakening of deactivation of excited luminescent ions by the formation of nanostructures. The influence of the solution preparation procedure on the formation of nanostructures of chelates with different lanthanide ions was revealed, which manifest itself as a variation in the enhancement and quenching of luminescence in the presence of ions from the cerium and yttrium subgroups. Possible applications of the columinescence phenomenon to chemical and medical analysis are briefly discussed.  相似文献   

16.
H Zhang  L Tian  R Zhang  Z Ye  J Yuan 《The Analyst》2012,137(19):4502-4508
Dissociation enhanced lanthanide fluoroimmunoassay (DELFIA) technique based on EDTA-Eu(3+) derivative biolabels is the most widely used time-resolved luminescence bioassay technique for clinical diagnosis, but its major drawback is that the conventional luminescence enhancement solution of EDTA-Eu(3+) requires UV excitation (<360 nm). In this work, three new visible-light-excited luminescence enhancement solutions are developed and their luminescence response behaviors to EDTA-Eu(3+) are systematically investigated. The new solutions were prepared by co-dissolving a newly synthesized tetradentate β-diketone, 1,2-bis[8'-(1',1',1',2',2',3',3'-heptafluoro-4',6'-hexanedion-6'-yl)-naphth-2'-yl]-benzene (BHHNB), and one of three derivatives of triazine, 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3-methylpyrazol-1-yl)-1,3,5-triazine (MPBT) or 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine (BPT), in a weakly acidic aqueous buffer at pH 3.2 containing 0.1% Triton X-100. These solutions showed sensitive and rapid luminescence responses to non-luminescent EDTA-Eu(3+) by the formation of the ternary Eu(3+) complexes, BHHNB-Eu(3+)-DPBT, BHHNB-Eu(3+)-MPBT and BHHNB-Eu(3+)-BPT. These complexes have long luminescence lifetimes (>500 μs) and a wide excitation wavelength range from UV to visible light with the excitation peaks at 390, 400 and 420 nm, respectively, which enabled the solutions to be used as visible-light-excited luminescence enhancement solutions for the highly sensitive time-resolved luminescence detection of EDTA-Eu(3+).  相似文献   

17.
Dynamic quenching of Eu(III) and Tb(III) luminescence by inorganic anions as a detection method in ion chromatography was investigated. To obtain a high luminescence intensity, lanthanide(III) complexes are formed with ligands which make indirect excitation of the ions possible. Only a few anions (e.g., nitrite, chromate) induce efficient dynamic luminescence quenching. Chromate is an efficient quencher of Tb-acac luminescence. Samples of tap water and surface water, spiked with chromate, were injected into a high-performance liquid chromatographic system with post-column addition of the luminescent complex. In this way, a detection limit of 1.1 . 10(-7) M (13 ppb) of chromate could be obtained.  相似文献   

18.
Derivatives of dipicolinic acid with a polyoxyethylene pendant arm at the pyridine 4-position have been functionalized for potential grafting with biological material. Four ligands with different terminal functions (alcohol, methoxy, phtalimide and amine) have been synthesized, which react with trivalent lanthanide ions Ln (III) to yield triple helical [Ln(L) 3] (3-) complexes, as shown by NMR and UV-vis titrations. The tris chelates display large thermodynamic stability with log beta 13 approximately 19-20 for all Eu (III) complexes for instance. Photophysical measurements reveal adequate sensitization of the metal-centered luminescence in the europium (eta sens = 33-72%) and terbium complexes, which is modulated by the nature of the terminal function. The lifetimes of the metal-centered excited states are long, up to 1.4 ms for [Eu(L) 3] (3-) and 1.6 ms for [Tb(L) 3] (3-) at room temperature, in line with hydration numbers essentially equal to zero. Quantum yields are as high as 29% for the [Eu( L ( NH2 )) 3] (3-) and 18% for the [Tb( L ( OH )) 3] (3-) tris chelates in water at physiological pH. These series of complexes demonstrate the extent of fine-tuning achievable for lanthanide luminescent probes and are simple models for investigating the effect of binding to biological molecules on the metal-centered luminescent properties.  相似文献   

19.
This work focuses on the grafting of transition metal complexes on silica surface nanoparticles. Nanoscale silica particles in aqueous sols are used as starting silicated materials. We have undertaken the synthesis of europium(III) complexes containing organosilyldipyridine ligands, (EtO)3Si(CH2)3NHCH2-bipy (1) and (EtO)(CH3)2Si(CH2) 3NHCH 2-bipy (2), in view of a direct grafting reaction on silica nanoparticles. Reaction of one molar equivalent of 1 and 2 with Eu(tmhd)3 (tmhd= 2,2,6,6-tetramethyl-3,5-heptanedionato), as precursor, leads to octacoordinated silylated europium(III) complexes [Eu(tmhd)3(1)] (3) and [Eu(tmhd)3(2)] (4) as white solids in 34-54% yields. Europium complexes were characterized by elemental analysis, mass spectrometry, FT-IR, UV, and luminescence spectroscopies. These new complexes are reacting in a 1:10 (v/v) water and ethanol mixture with silica nanoparticles colloidal sol. Elemental analysis and thermogravimetric data indicated grafting ratios of 0.41 and 0.26 mmol of europium(III) complexes per gram of silica. Functionalized silica nanoparticles were characterized by DRIFT spectroscopy and TEM microscopy. The first analysis shows that the chemical integrity of the complexes is retained on the silica surface together with the size and the monodispersity of the nanoscale particles. As expected for europium(III) complexes, luminescence is observed under UV irradiation. Emission and excitation spectra indicate that the metal coordination environment is not modified on the silica surface. Moreover, the sharpness of the luminescence bands and the strong antenna effect are maintained when complexes are covalently bonded to silica. New luminescent europium(III) complexes grafted on silica nanoparticles are therefore obtained from our approach.  相似文献   

20.
Three new dinuclear lanthanide(III) complexes {Eu(hfac)(3)(H(2)O)}(2)(μ-HPhMq)(2) (2) and {Ln(hfac)(3)(H(2)O)}(2)(μ-HMe(2)NC(6)H(4)Mq)(2) (Ln = Eu, 3; Nd, 4) with 8-hydroxylquinoline derivatives in μ-phenol mode were synthesized and characterized, where hfac(-) = hexafluoroacetylacetonate, HPhMq = 2-methyl-5-phenylquinolin-8-ol, and HMe(2)C(6)H(4)Mq = 5-(4-(dimethylamino)phenyl)-2-methylquinolin-8-ol. Compared with that (400 nm) for {Eu(hfac)(3)}(2)(μ-HMq)(2) (1, HMq = 2-methy-8-hydroxylquinoline), the excitation wavelength for sensitized lanthanide luminescence is extended to ca. 420 nm for 2, and 500 nm for 4 by introducing a phenyl or 4-(dimethylamino)phenyl to 8-hydroxylquinoline. These dinuclear lanthanide(III) complexes exhibit distinctly fluoride-induced lanthanide(III) emission enhancement in both intensity and lifetime due to replacing coordination water molecules or formation of strong O-H···F hydrogen bonds with coordinated H(2)O and μ-phenol, thus suppressing significantly the non-radiative O-H oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号