首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brown WF  Fisher IP 《Talanta》1972,19(6):798-801
The effect of controlling the temperature of the ion source of a high-resolution mass spectrometer is to increase the confidence in mass spectral pattern coefficients of saturated molecules. Results are presented for both controlled and uncontrolled ion-source temperatures. Standard deviations have been calculated for selected summations of ion intensities and criteria have been suggested for maintaining meaningful analytical results in the study of petroleum distillates.  相似文献   

2.
The potential of resonance-enhanced multiphoton ionization (REMPI) mass spectrometry to pick out the fragmentation pattern due to 13C1-isotopomers from the fragmentation pattern due to the unlabeled molecule, in non-isotope-enriched samples, has been explored. Toluene, n-propylbenzene, ortho-diethylbenzene, and tert-butylbenzene have been used as testing samples. The fragmentation patterns of the unlabeled molecule and of the natural abundance 13C1-isotopomer have been measured in a time-of-flight mass analyzer by exciting successively the S1 ← S0 origins of the 12C-monoisotopic molecule and 13C1-isotopomers. Fragmentation mechanisms are not completely clear from the comparison of these mass spectra, but the method can be applied to low concentration enriched compounds labeled in known positions.  相似文献   

3.
Electron impact mass spectrometry of a range of amidines (R′NC(R)NHR′) including formamidines, acetamidines, benzamidines and tert-butylamidine, has been undertaken, and comparisons made of the fragmentation pathways followed by the different families of compounds. Fragmentation of all the molecular ions is characterized by skeletal carbon-nitrogen bond cleavage to form [R′NCR]+ and [R′NH]+ fragments, both of which are observed. For formamidines (R?H), the positive charge remains with the [R′NH]+ fragment which leads to the base peak at m/z93 corresponding to [R′NH2]+˙. In contrast, for acetamidines and benzamidines the charge prefers to remain with the [R′NCR]+ fragment which gives the base peak for these compounds. The spectra of unsubstituted amidines (HNC(R)NH2) are characterized by cleavage of the carbon substituent from the NCN skeleton, [CN2H3]+ (m/z 43) being produced in all cases.  相似文献   

4.
This work reports a detailed study of the fragmentations of aporphine alkaloids by electrospray ionization with multistage mass spectrometry (ESI-MS(n)) in positive mode. In a first step the loss of the amino group and its substituent is observed. Further steps display the loss of the peripheral groups. Losses of methanol and CO are observed if an OH is vicinal to an OCH(3) on the aromatic ring. Otherwise the spectra show radical losses of CH(3)* or CH(3)O* as the main fragmentations. If a methylenedioxy group is present losses of formaldehyde followed by CO are observed. These fragmentations yield important information on the structures of aporphines.  相似文献   

5.
In this paper we describe the application of electrospray time-of-flight mass spectrometry (ESI-TOFMS) to structural elucidation of the fragment ions formed from a range of natural and synthetic allelochemical derivatives. The extensive mass spectrometric characterisation of ten non-glucosylated benzoxazinone derivatives using this method is described here for the first time. The analytes include six naturally occurring 1,4-benzoxazin-3(4H)-one derivatives, including the hydroxamic acids DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one] and DIBOA [2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one], lactams HBOA [2-hydroxy-2H-1,4-benzoxazin-3(4H)-one] and HMBOA [2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one], benzoxazolinones BOA [benzoxazolin-2(3H)-one] and MBOA [6-methoxy-benzoxazolin-2(3H)-one] and four synthetic variations, 2'H-DIBOA [4-hydroxy-2H-1,4-benzoxazin-3(4H)-one], 2'OMe-DIBOA [2-methoxy-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one], 2'H-HBOA [2H-1,4-benzoxazin-3(4H)-one] and 2'OMe-HBOA [2-methoxy-2H-1,4-benzoxazin-3(4H)-one]. Assignments of the mass spectral fragments were aided by elemental composition calculation results, comparison of structural analogues and background literature, and acquired knowledge regarding feasible structures for the compounds. The influence of substituents on the chemical reactivity of the compounds with respect to the observed MS behaviour over varying nozzle potentials is addressed and, through comparison of the structural analogues, generic fragmentation patterns have also been identified.  相似文献   

6.
Ionization and prompt fragmentation patterns of triacylglycerols, phospholipids (PLs) and galactolipids were investigated using matrix-assisted laser desorption/ionization (MALDI). Positive ions of non-nitrogen-containing lipids appeared only in the sodiated form, while nitrogen-containing lipids were detected as both sodiated and protonated adducts. Lipids containing acidic hydroxyls were detected as multiple sodium adducts or deprotonated ions in the positive and negative modes, respectively, with the exception of phosphatidylcholines. The positive MALDI spectra of triacylglycerols contained prompt fragments equivalent to the loss of RCOO(-) from the neutral molecules. Prompt fragment ions [PL-polar head](+) were observed in the positive MALDI spectra of all phospholipids except phosphatidylcholines. The phosphatidylcholines produced only a minor positive fragment corresponding to the head group itself (m/z 184). Galactolipids did not undergo prompt fragmentation. Post-source decay (PSD) was used to examine the source of prompt fragments. PSD fragment patterns indicated that the lipid prompt fragment ions did not originate from the observed molecular ions (sodiated or protonated), and suggested that the prompt fragmentation followed the formation of highly unstable, probably protonated, precursor ions. Pathways leading to the formation of prompt fragment ions are proposed.  相似文献   

7.
The structures of two oligomers of acidic xylo-oligosaccharides (XOS) of the same molecular weight (634 Da), Xyl(2)MeGlcAHex and Xyl(2)GlcA(2) were differentiated by electrospray tandem mass spectrometry (ESI-MS/MS). These oligomers were present in a mixture of XOS obtained by acid hydrolysis of heteroxylans extracted from Eucalyptus globulus wood (Xyl(2)MeGlcAHex) and Olea europaea olive fruit (Xyl(2)GlcA(2)). In the ESI-MS spectra of the XOS, ions at m/z 657 and 652 were observed and assigned to [M + Na](+) and [M + NH(4)](+), respectively. The ESI-MS/MS spectrum of [M + Na](+) ion of Xyl(2)MeGlcAHex showed the loss of Hex residue from the reducing end followed by the loss of MeGlcA moiety. Simultaneously, the loss of a Xyl residue from either the reducing or the non-reducing ends was detected. On the other hand, the fragmentation of Xyl(2)GlcA(2) occurs mainly by the loss of one and two GlcA residues or by the loss of the GlcAXyl moiety, due to the glycosidic bond cleavage between the two Xyl residues. Loss of one and two CO(2) molecules was only observed for this oligomer, where the GlcA are in vicinal Xyl residues. The ESI-MS/MS spectra of [M + NH(4)](+) of both oligomers showed the loss of NH(3), resulting in the protonated molecule, where the presence of ions assigned as protonated molecules of aldobiuronic acid residues, [MeGlcA - Xyl + H](+) and [GlcA - Xyl + H](+), are diagnostic ions of the presence of MeGlcA and GlcA moieties in XOS. Since these structures occur in small amounts in complex acidic XOS mixtures and are very difficult, if possible, to isolate, tandem mass spectrometry revealed to be a powerful tool for the characterization of these types of substitution patterns present in heteroxylans.  相似文献   

8.
Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision‐induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss‐dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS3 and multistage activation (MSA), have been designed to generate more sequence‐informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron‐driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large‐scale phosphoproteomics studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The fragmentation patterns of synthetic Escherichia coli-type lipid A in plasma desorption mass spectrometry (PDMS) in both negative- and positive-ion modes were determined. Negative-ion spectra gave signals for the main diphosphorylated (intact) molecular species in their native proportions. Intact and alkaline-treated lipid A in this mode gave, for the glucosamine I moiety, easily identified signals that have not been previously reported in PDMS. These spectra gave enough information to localize the fatty acids. The procedure was verified with relatively homogeneous lipids A prepared from Salmonella minnesota R595 and Neisseria meningitidis lipopolysaccharides, and then applied to the previously unstudied Yersinia entercolitica O:11,24 lipid A to obtain the localization of its fatty acids. The possibility of obtaining this much information from two negative-ion spectra was attributed to the method, described earlier, of preparing the samples. In the positive-ion mode, about half of the E. coli ions containing diglucosamine appeared as monodephosphorylated species and/or as Na adducts. The intact glucosamine II moiety and its fragment ions gave signals none of which were Na adducts. With lipids A prepared from S. minnesota, N. meningitidis, and Y. enterocolitica, similar fragmentation patterns were observed. For lipid A structure determination, the positive-ion mode could play a confirmatory role. The above results and some of those reported by others were compared.  相似文献   

11.
The fragmentation mechanism of D-glucose was investigated in detail by two different fragmentation techniques, namely, collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) using all six 13C-labeled isotopomers and 2H-labeled isotopomers. For both CID and IRMPD energy-resolved measurements were carried out. Individual fragmentation pathways were studied at MS2 and MS3 levels. Additionally, we have developed an HPLC-tandem MS method to separate the anomers of D-glucose using a HILIC column and investigated their fragmentation patterns individually. We propose a complete fragmentation landscape of D-glucose, demonstrating that a rather simple multifunctional molecule displays extreme complexity in gas phase dissociation, following multiple parallel fragmentation routes yielding a total of 23 distinct fragment ions. The results allowed a detailed formulation of the complex fragmentation mechanism of D-glucose. The results have immediate consequences for the full structure analysis of complex carbohydrates.  相似文献   

12.
Mass spectra of some twelve derivatives of 1,3,4-thiadiazole are reported. The fragmentation scheme of the 1,3,4-thiadiazole ring is specific and indicative as to the structure. Derivatives of 5-phenyl-1,3,4-thiadiazoles show rearrangement to isothiocyanates.  相似文献   

13.
A reliable method for structural analysis is crucial for the forensic investigation of new psychoactive substances (NPSs). Towards this end, mass spectrometry is one of the most efficient and facile methods for the identification of NPSs. However, the differentiation among 2‐, 3‐, and 4‐fluoromethcathinones (o‐, m‐, and p‐FMCs), which are ring‐fluorinated positional isomers part of the major class of NPSs referred to as synthetic cathinones, remains a challenge. This is mostly due to their similar retention properties and nearly identical full scan mass spectra, which hinder their identification. In this study, we describe a novel and practical method for differentiating the fluorine substitution position on the phenyl ring of FMCs, based on energy‐resolved mass spectrometry (ERMS) using an electron ionization‐triple quadrupole mass spectrometer. ERMS measurements showed that the three FMC positional isomers exhibited differences in relative abundances of both the fluorophenyl cation (m/z 95) and the fluorobenzoyl cation (m/z 123). The logarithmic plots of the abundance ratio of these two cations (m/z 95 to m/z 123) as a function of the collision energy (CE) followed the order of o‐FMC < p‐FMC < m‐FMC at each CE, which allowed the three isomers to be unambiguously and reliably differentiated. The theoretical dissociation energy calculations confirmed the relationship obtained by ERMS analyses, and additional ERMS measurements of methylmethcathinone positional isomers showed that the differences in abundance among the FMCs were attributed to the differences in their collision‐induced dissociation reactivities arising from the halogen‐induced resonance effects on the phenyl ring. Moreover, the method for differentiation described herein was successfully applied to the actual samples containing seized drugs. We expect that the described methodology will also contribute significantly to the reliable and accurate structural identification of NPSs in the fields of therapeutic, clinical, and forensic toxicology.  相似文献   

14.

Background  

Polychlorinated biphenyls are persistent organic pollutants that can be metabolized via hydroxylated PCBs to PCB sulfate metabolites. The sensitive and selective analysis of PCB sulfate monoesters by gas chromatography-mass spectrometry (GC-MS) requires their derivatization, for example, as PCB 2,2,2-trichloroethyl (TCE) sulfate monoesters. To aid in the identification of unknown PCB sulfate metabolites isolated from biological samples, the electron impact MS fragmentation pathways of selected PCB TCE sulfate diesters were analyzed and compared to the fragmentation pathways of the corresponding methoxylated PCBs.  相似文献   

15.
The mass spectra of 2- and 4-substituted 1,3-cyclopentanediones are discussed. Methyl substituted compounds display mostly ring degradation, while for longer alkyl groups fragmentations in the side chain are responsible for most of the total ionization. As was found for other 1,3-diketones the spectra of 1,3-cyclopentanediones show typical and separate fragmentations for both diketoand enol-molecular ions.  相似文献   

16.
Wavelength-dependent effects in the resonance-enhanced multiphoton ionization/fragmentation mass spectra of p-chloroaniline and diphenyl ether are presented. For both molecules, the formation of low-energy fragments can be discriminated against in favor of higher-energy fragments by using ‘low’-energy radiation (290 nm region) for ionization/fragmentation. The same low-energy fragments become dominant when higher-energy radiation (266 nm) is used. This unique behavior is explained in terms of the narrow distribution of parent ion internal energies created through resonance-enhanced multiphoton ionization/fragmentation and the competing kinetic processes accessed by the parent ion as it absorbs each successive photon.  相似文献   

17.
Oligogalacturonides of different degrees of polymerization (DP) and methyl esterification (DE) were structurally analyzed by nanoESI quadrupole ion-trap mass spectrometry. The fragmentation patterns of the oligogalacturonides were compared using the program 'Virtual Expert Mass Spectrometrist' (VEMS) for structural annotation. In the analyzed oligogalacturonides of lower DP, the generation of C/Y ions, i.e. ions retaining the glycosidic oxygen, was higher than that of B/Z ions. In general, with oligogalacturonides of higher DP, the B/Z ions were generated more abundantly. Oligogalacturonides with free carboxylic acid groups underwent higher water loss compared to fully methyl-esterified oligogalacturonides under the same fragmentation conditions. Cross-ring cleavage, in which fragmentation occurs across the ring system of the galacturonate residue and signified by unique mass losses, was observed to be higher in fully methyl-esterified oligogalacturonides than in non-methyl-esterified ones. This study demonstrates the different fragmentation patterns of oligogalacturonides as influenced by the presence or absence of methyl ester groups. For a detailed analysis of unknown oligogalacturonides, cross-ring fragmentation gives more structural information than glycosidic bond cleavage. One implication of this is that more structural information is obtained when analyzing methyl-esterified oligogalacturonides than non-methyl-esterified ones in an ion-trap instrument. This is of particular importance in pectin chemistry, where mass spectrometry has become the technique of choice for structural determination. Although this study was not designed to explain the mechanisms of oligogalacturonide fragmentation, possible explanations for why non-methyl-esterified oligogalacturonides undergo more water loss than methyl-esterified ones will be postulated. In addition, the VEMS program was extended to automatically interpret and assign the fragment ions peaks generated in this study.  相似文献   

18.
The mass spectra of all isomers of mononitrotoluene, four isomers of dinitrotoluene and of 2,4,6,-trinitrotoluene, obtained by multiphoton ionization utilizing ultrashort laser pulses with center wavelengths of either 206 nm or 412 nm, are presented and discussed. Under these ionization conditions all nitrotoluenes exhibit a high degree of fragmentation which increases with the degree of substitution. For the compounds having a nitro group in position 2 and/or 6 a pronounced ortho effect leading to the loss of OH is observed. The fragmentation patterns in the lower mass range are typical for alkylated aromatic substances. While no fundamental differences between the mass spectra obtained with the two wavelengths were observed, the visible light in all cases resulted in a broader variety of fragments and additional signals in the higher mass range. The latter can be used for isomer identification.  相似文献   

19.
Archaea are ubiquitous and abundant microorganisms on Earth that mediate key global biogeochemical cycles. The headgroup attached to the sn-1 position of the glycerol backbone and the ether-linked isoprenoid lipids are among the diagnostic traits that distinguish Archaea from Bacteria and Eukarya. Over the last 30 years, numerous archaeal lipids have been purified and described in pure cultures. Coupled high-performance liquid chromatography (HPLC) ion-trap mass spectrometry (ITMS) now enables the detection and rapid identification of intact polar lipids in relatively small and complex samples, revealing a wide range of archaeal lipids in natural environments. Although major structural groups have been identified, the lack of a systematic evaluation of MS/MS fragmentation patterns has hindered the characterization of several atypical components that are therefore considered as unknowns. Here, we examined mass spectra resulting from lipid analysis of natural microbial communities using HPLC/electrospray ionization (ESI)-ITMS(n), and depicted the systematics in MS(2) fragmentation of intact archaeal lipids. This report will be particularly useful for environmental scientists interested in a rapid and straightforward characterization of intact archaeal membrane lipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号