首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐典勇  金诚  邹婷  黄雪娜 《化学学报》2009,67(14):1539-1546
在UBP86/LANL2DZ和UBP86/def2-TZVP水平下详细研究了AumNin (m+n≤6)团簇的几何结构和电子性质. 详细地分析了团簇的结构特征, 平均结合能, 垂直电离势, 垂直电子亲和能, 电荷转移以及成键特征. 所有混合团簇中, 镍原子趋于聚集到一起, 形成最多Ni—Ni键, 金原子分布在镍原子聚集体周围以形成最多Au—Ni键. Ni原子较少团簇的电子性质与纯金团簇类似, 呈现一定奇偶振荡. 混合团簇中存在镍到金原子间的电荷转移. Ni原子较少团簇中, 自旋电子主要定域在Ni原子上, Ni原子较多团簇中, Au原子明显受到自旋极化. 混合团簇的分波态密度表明, AuNi混合团簇对小分子的反应活性要高于纯金团簇.  相似文献   

2.
The work is devoted to the theoretical study of sensor activity of nanosystems based on a carbon nanotube modified with a functional amino group, with respect to certain metal atoms and ions. The calculations were performed within the molecular cluster model using the semiempirical MNDO scheme and density functional theory DFT. The mechanism of attachment of an amino group to the open edge of zigzag single-walled carbon nanotubes possessing cylindrical symmetry was studied to design a chemically active sensor based on them. The key geometric and electron-energy characteristics of the constructed systems have been determined. The interaction of the sensors thus constructed with atoms and ions of some metals—potassium, sodium, and lithium—has been studied. The scanning of arbitrary surfaces containing selected atoms or ions has been modeled; from the interaction energies, and the activity of the single-walled carbon nanotube + amino group probe system has been determined with respect to the selected elements to be initialized. Analysis of the charge state of the system has established that the sensor action mechanism is realized, as a result of which the number of charge carriers in the resulting nanotubular system serving as a sensor probe changes, which provides the appearance of conductivity in the system. The presence of metallic atoms can be experimentally detected by the change in the potential in a probe system based on a nanotube with a functional group. The theoretical studies have proved the possibility of creating highly sensitive sensors based on the most promising nanomaterial— carbon nanotubes functionalized with active chemical groups, including the amino group NH2.  相似文献   

3.
The title crown ether, C28H40O8, crystallizes in an ortho­rhombic cell with the full mol­ecule generated from crystallographic inversion symmetry. The ring consists of 30 atoms which could potentially influence the size of the ring cavity and the conformational flexibility. Unusual C—O—C—C and O—C—C—O torsion‐angle geometries, deviating by as much as 30° from their ideal values, have been observed.  相似文献   

4.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

5.
The types of sulfur bonding—as sulfane or sulfide—encountered in the molecules of maingroup elements are almost unknown in the chemistry of metal complexes, where the sulfur atoms function instead as two-electron donors by bridging two metal atoms, as four-electron donors by bridging three or four metal atoms, or as six-electron donors by incorporation between four metal atoms. In such complexes, the metal-metal bond can be modified over a wide range by chemical or electrochemical variation of the number of electrons present. The readiness with which polynuclear complexes containing metals and sulfur undergo redox reactions is also utilized by Nature in the active sites of some redox proteins.  相似文献   

6.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

7.
N-(Phospho­no­methyl)­glycine, glyphosate, reacts with bis­(tri­butyl­tin) oxide to form a ligand–tin (1:3) complex in which all five O atoms are coordinated to tin. The complex, [Sn3(C4H9)9(C3H5NO5P)], is polymeric, with the glyphosate and two tri­butyl­tin groups forming a two-dimensional network and with the third Sn atom alternately above and below the plane of the net. The Sn atoms in the network have a trigonal-bipyramidal coordination, with O atoms in the axial positions and C atoms in the equatorial positions; the pendant tri­butyl­tin group is tetrahedrally coordinated to one O atom and to three butyl groups. Sn—O distances vary from 2.030 (3) to 2.408 (3) Å. The Sn—O distances for O atoms trans to carboxyl­ate groups are shorter than those trans to phos­phonate groups and dSn—O decreases with increasing dC/P—OSn—O≃−4.6ΔC/P—O). The amino N atom in the ligand is neither protonated nor involved in coordination to the Sn atoms.  相似文献   

8.
The substitution effect of fluorine on ethylene is investigated by means of studyingthe properties of the charge distribution at the bond critical points with the theory of atomsin molecules.It is found that fluorine atom acts not only as a σ electron acceptor,but also asa π electron donor,and these double effects are reflected in the quantity of ellipticity,Lap-lacian and the charge density of charge distribution at the bond critical points.For C—C,C—Fbonds,the major axis of elliptical contours is perpendicular to the molecular plane,but forC—H bond,it is parallel to the molecular plane.Other effects originating from the substi-tution have also been discussed.  相似文献   

9.
The structure of N,N′,N′′‐tribenzylphosphorothioic triamide, C21H24N3PS, (I), and analysis of the bond‐angle sums at the N atoms for this compound, and for 74 structures with a P(S)[N]3 skeleton and the N atom in a three‐coordinate geometry found in the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671], are reported. For (I), the bond‐angle sum at one of the N atoms [359 (1)°] shows a nearly planar configuration, while the other two show a nonplanar geometry with bond‐angle sums of 342 (1) and 347 (1)°. The location of the atoms attached to the nonplanar N atoms suggests an anti orientation of the corresponding lone electron pairs (LEPs) on these N atoms with respect to the P=S group. For 74 structures with a P(S)[N]3 skeleton and with the N atom in a three‐coordinate geometry, the bond‐angle sums at the N atoms were found to be in the range 293–360°. Among 307 such three‐coordinate N atoms, 39% (120 N atoms) have bond‐angle sums in the range 359–360°, in accordance with sp2 hybridization, and 45% (138 N atoms) have bond‐angle sums in the range 352–359°, with hybridization close to sp2. For the orientation of the LEP with respect to the P=S group, the anti orientation was found to be a general rule for N atoms, with the corresponding bond‐angle sums deviating by more than 8° from the planar value of 360°. In the title structure, the S atom takes part in intermolecular (N—H...)(N—H...)S hydrogen bonds, connecting the molecules into extended chains parallel to the b axis. The co‐operation of one N atom in an N—H...S hydrogen bond as an H‐atom donor, and in an N—H...N hydrogen bond as an acceptor, is a novel feature of the crystal structure.  相似文献   

10.
We present results of molecular orbital thory calculations of the interactions of acrylic polymers with aluminum, with a view toward understanding the nature of chemical bonding at the corresponding polymer-metal interfaces. The reported results are for the interactions of polymer model compounds with metal atoms (as opposed to our ongoing studies with metal surfaces). As such, the results relate to experimental studies where small dosages of metal atoms are evaporated onto polymer surfaces in pristine high vacuum environments. Our studies have been conducted within the theoretical framework of Hartree-Fock molecular orbital theory. We find that aluminum atoms interact primarily with the carbonyl group of acrylic polymers. The reaction proceeds by the metal atoms interacting with both the carbon and the oxygen atoms of the carbonyl functionality. This weakens the C?O bond. Finally, the carbonyl bond loses double bond character, and strong AL—O bonds are formed. Our results are compared to experimental data, and the implications of the detailed nature of bonding for adhesion applications are discussed.  相似文献   

11.
In the title compound, [HgCl2(C15H26N2)], the chiral alkaloid (6R,7S,8S,14S)‐(−)‐l ‐sparteine acts as a bident­ate ligand, with two Cl ligands occupying the remaining coordination sites, producing a distorted tetra­hedron. The N—Hg—N plane is twisted by 81.1 (2)° from the Cl—Hg—Cl plane. The mid‐point of the N⋯N line does not lie exactly on the Cl—Hg—Cl plane but is tilted towards one of the N atoms by 0.346 Å. Similarly, the mid‐point of the Cl⋯Cl line is tilted toward one of the Cl atoms by 0.163 Å. The packing structure shows that the complex is stabilized by two inter­atomic Cl⋯H contacts involving both Cl atoms and the methyl­ene or methine H atoms of the (−)‐sparteine ligand.  相似文献   

12.
PrSeTe2, an Ordered Ternary Polychalcogenid with NdTe3 Structure Single crystals of PrSeTe2 have been obtained by reaction of the elements in a LiCl/RbCl flux at 970 K during 7 days. PrSeTe2 crystallizes in space group Cmcm (No. 63), with four formula units per unit cell. The lattice constants are a = 426.1(1) pm, b = 2506.0(5) pm, and c = 426.0(1) pm. The crystal structure is an ordered ternary variant of the NdTe3 type. It consists of a puckered double layer of praseodymium and selenium atoms [PrSe] sand wiched by two square planar layers of tellurium atoms [Te] yielding a stacking —[Te]—[Te]—[PrSe]— along [010]. The Te atoms build regular 44 nets with Te—Te distances of 301, 3(1) pm. DFT calculations propose that this compounds should be metallic mainly due to contributions of the Pr f‐electrons. The band structure shows no significance for a distortion in the [Te]—nets.  相似文献   

13.
14.
The crystal structure of Hg3AlF6O2H, trimercury(II) alu­minium hydrogen hexafluoride dioxide, can be derived from a slightly distorted cubic close‐packed (ccp) arrangement of the metal atoms, where three quarters of the positions are occupied by Hg atoms and one quarter by Al atoms. The F and O atoms are considerably dislocated from the tetrahedral voids of this arrangement, thus forming [HgO2F6] polyhedra, with two short Hg—O distances, two intermediate Hg—F distances and four longer Hg—F distances, and nearly ideal [AlF6] octahedra. The H atoms are presumably located close to the inversion centre. Their positions were derived from crystal chemical arguments, and they take part in the formation of O—H?O hydrogen bonds between two O atoms, with an O?O distance of 2.562 (9) Å.  相似文献   

15.
Chemical Vapor Transport of ZnS and CdS with Phosphorus — ZnS:P mixed Crystals The volality of ZnS and CdS is enlarged in the presence of Phosphorus vapor. This is due to the formation of PS(g). By means of chemical vapor transport (1000 → 900 °C) using phosphorous as transport agent ZnS:P mixed crystals (sphalerit type) have been prepared. Density measurements on these mixed crystals show that interstitial zinc atoms are the consequence of the substitution of sulfur by phophorus atoms.  相似文献   

16.
The polymerization of ethylene on a chromic oxide catalyst with and without a solvent has been studied. It was found that the active catalyst surface is formed exclusively as a result of its interaction with ethylene. This interaction is accompanied by the formation of products which poison the surface of the catalyst when they are sorbed on it in the absence of a solvent. A catalyst which contains no Cr+6 atoms as a result of reduction by alcohol is inactive. On the other hand, a catalyst which contains only Cr+6 atoms becomes active only after it has been partially reduced. The most probable product of this reduction is trivalent chromium atoms. The results obtained have given grounds for the assumption that the active complex contains Cr+6 and Cr+3 atoms. A possible mechanism of the reaction is discussed. Owing to the oxidative action of CrO3 on the ethylene molecules, part of the Cr+6 is reduced to Cr+3, and the trivalent chromium becomes alkylated. The monomer molecule is added at the Cr+3—C bond thus formed. A strong Lewis acid, CrO3, lowers the electron density on the Cr+3 atom. This increases the strength of the Cr+3—C bond and the ability of the Cr+3 atom to coordinate with the monomer molecule. The monomer molecule enters the chain at the moment when the strength of the Cr?3—C bond is weakened due to coordination of this molecule with the Cr+3 atom.  相似文献   

17.
The Hg atom in the title monomeric complex, di­chloro­bis(3‐imidazolium‐2‐thiol­ato‐S)­mercury(II), [HgCl2(C3H4N2S)2], is four‐coordinate having an irregular tetrahedral geometry composed of two Cl atoms [Hg—Cl 2.622 (2) and 2.663 (2) Å] and two thione S atoms [Hg—S 2.445 (2) and 2.462 (2) Å]. The monodentate thione ligand adopts a zwitterionic form and exists as the 3‐imidazolium‐2‐thiol­ate ion. The bond angle S1—Hg—S2 of 130.87 (8)° has the greatest deviation from ideal tetrahedral geometry. Intermolecular hydrogen bonds between two of the four N—H groups and one of the Cl atoms [3.232 (8) and 3.238 (7) Å] stabilize the crystal structure, while the other two N—H groups contribute through the formation of N—H?Cl intramolecular hydrogen bonds with the other Cl atom [3.121 (7) and 3.188 (7) Å].  相似文献   

18.
本文通过杂环胺类对二溴萘四酰亚胺的亲核反应,分别设计合成了8个未见报道的基于萘四酰亚胺母体的新型单取代或者双取代荧光染料.系统性光谱研究表明,胺类的推电子作用差异可以很好地调控其吸收和荧光波长,使之成为一类性能良好的可见或长波长荧光染料(最大吸收509—580 nm;最大发射565—638 nm;荧光量子效率0.21—0.54;Stokes位移36—77 nm).  相似文献   

19.
采用密度泛函理论PBE0方法, 在aug-cc-pVTZ水平上理论预测了含平面五配位硅和锗原子的XBe5H6 (X=Si, Ge)团簇. 势能面系统搜索及高精度量化计算表明, 它们均为全局极小结构. XBe5H6(X=Si, Ge)团簇整体呈完美的扇形结构: Si/Ge原子被5个金属Be原子配位; 4个H原子以桥基方式与Be原子相键连, 剩余的2个 H原子以端基方式与两端的Be原子成键. 化学键分析表明, XBe5H6(X=Si, Ge) 团簇中XBe5单元具有完全离域的1个π及3个σ键, 外围铍氢间形成4个Be—H—Be 三中心二电子(3c-2e)键及2个定域的Be—H键. XBe5单元上离域的2π及6σ电子赋予体系πσ双重芳香性, 并使Si/Ge原子满足八隅律(或八电子规则). 能量分解-化学价自然轨道分析揭示, Si/Ge和Be5H6之间主要为电子共享键.  相似文献   

20.
The title compound, C13H14O3, crystallized in the centrosymmetric space group C2/c with one mol­ecule as the asymmetric unit. Each hydroxyl O atom is involved in hydrogen bonds with two other hydroxyl O atoms. The resulting chains of interactions propagate along [001]. In these interactions, the hydroxyl H atoms are disordered and the O?O distances are 2.648 (2) and 2.698 (2) Å. Two leading intermolecular C—H?O interactions have H?O distances of 2.80 and 2.84 Å and C—H?O angles of 136 and 144°; these interactions form chain and ring patterns. Taken together with the hydrogen bonds, they result in a three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号