首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

2.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

3.
The [CH3O?CHCH3]+ ions observed in the mass spectra of ethers of formula CH3OCH (CH3)R(R = H or alkyl) undergo two rearrangement fragmentation reactions to form [C2H5]+ and [CH2OH]+. The scope of the rearrangements has been investigated and it is shown that enlargement of the alkyl group on either side of the ether linkage leads to alternative fragmentation routes. From a study of metastable intensities it is concluded that the fragmentations probably occur directly from the [CH3O?CHCH3]+ structure through four centred rearrangements rather than through the intermediacy of the [C2H5O?CH2]+ ion.  相似文献   

4.
A detailed energy-resolved study of the fragmentation of CH2?CHCH(OH)CD2CD3 (1-d5) has been carried out using metastable ion studies and charge exchange techniques, combined with collision-induced dissociation studies to establish the structures of fragment ions. At low internal energies (metastable ions) the molecular ion of 1-d5 rearranges to the 3-pentanone structure and fragments by loss of C2H5 or C2D5 leading to the acyl structure, [CH3CH2C?O]+ or [CD3CD2C?O]+, for the fragment ion. However, with increasing internal energy of the molecular ion this rearrangement process decreases rapidly in importance and loss of C2D5 by direct cleavage, leading to [CH2?CHCH?OH]+, becomes the dominant fragmentation reaction. As a result the [C3H5O]+ ion seen in the electron impact mass spectrum of 1-penten-3-ol has predominantly the protonated acrolein structure.  相似文献   

5.
The 70 eV mass spectrum of phenyl ω-dimethoxyethyl telluride [C6H5? Te? CH2CH(OR)2, R?CH3]contains an intense peak at m/z 238 which corresponds to a rearrangement ion [C6H5? Te? OR]+. The formation of this species is further illustrated by the presence of a peak at m/z 241 in the spectrum of the hexadeuterated analog (R?CD3) and a peak at m/z 252 in the spectrum of the ethyl analog (R?CH2CH3). These combined results illustrate the presence of only one of the alkoxyl groups in the rearrangement ion. Several other abundant ions that contain oxygen but not tellurium are present in the spectra of these compounds. High resolution analyses have aided in the determination of the origin and composition of several of the characteristic ions formed upon electron impact fragmentation of phenyl ω-dimethoxyethyl telluride.  相似文献   

6.
The behaviour under electron impact (70 eV) which includes some rearrangement processes of some tetraorganodiphosphanedisulfides R2P(S)-P(S)R2 (R ? CH3, C2H5, n-C3H7, n-C4H9, C3H5, C6H5) and CH3RP(S)–P(S)CH3R (R ? C2H5, n-C3H7, n-C4H9, C6H5, C6H5, C6H5,CH2) is reported and discussed. Fragmentation patterns which are consistent with direct analysis of daughter ions and defocusing metastable spectra are given. The atomic composition of many of the fragment ions was determined by precise mass measurements. In contrast to compounds R3P(S) loss of sulphur is not a common process here. The first step in the fragmentation of these compounds is cleavage of one P–C bond and loss of a substituent R?. The second step is elimination of RPS leading to [R2PS]+ from which the base peaks in nearly all the spectra arise. The phenyl substituted compounds give spectra with very abundant [(C6H5)3P]+. and [(C6H5)2CH3P]+. ions respectively, resulting from [M]+. by migration of C6H5. Rearrangement of [M]+. to a 4-membered P-S ring system prior to fragmentation is suggested.  相似文献   

7.
The main fragmentation pathways of the N-1, C-2 and C-4 stereoisomers of the 1,2-dimethyl-4-R-transdecahydroquinoline-4-ol N-oxides (R=C?CH, CH?CH2 and C2H5) under electron impact are discussed. The correlation between the mass spectrometric chromatographic behaviour and the configuration of polar groups in the N-oxides examined is discussed. The mass spectra of the N-1 stereoisomers may be subdivided into two groups, depending only on the orientation of N→O group and not of the 4-OH group. The spectra of N-oxides with the axial N-oxide group reveal less intense ions and much more intense [M? CH3]+, [M? O]+, [M? OH]+ and ions, whereas in the spectra of their equatorial epimers the abundance of the ions exceeds the intensities of the latter ions.  相似文献   

8.
The distonic radical cation C5H5N+?·CH2 can be generated by the reactions of neutral pyridine with the radical cations of cyclopropane, ethylene oxide, and ketene, as well as with the [C3H6]+ ion from fragmentation of tetrahydrofuran. The distonic product ion can be distinguished from isomeric methylpyridine radical cations because the former gives characteristic [M?CH2]+, [M ? CH2NCH]+, and a doubly charged ion, all of which are produced on collisional activation. Furthermore, the distonic species completely transfers CH2 + to more nucleophilic, substituted pyridines. These properties are all consistent with the assigned distonic structure. Another distonic isomer, the (3-methylene) pyridinium ion, can be distinguished from the (1-methylene)pyridinium ion on the basis of their different fragmentation behaviors. The latter ion exhibits higher stability (lower reactivity) than the prototypal [·CH2NH3 +], making available a distonic species whose bimolecular reactivity can be readily investigated.  相似文献   

9.
Mass spectra of substituted benchrotrenyls RC6H5Cr(CO)3 where R?H, F, CI, I, CH3, OCH3, COOCH3, C2H5, N(CH3)2, NH2, C6H5, C(CH3)3, p-C6H4NH2, CH2C6H5, CH2CH2C6H5), 1,3,5-(CH3)3C6H3Cr(CO)3 and 1,2,3,5-(CH3)4C6H2Cr(CO)3 have been studied. It has been found that for monosubstituted benchrotrenyls there is a linear dependence of the parameter log [Cr]+/[RC6H5Cr]+) on the number of degrees of freedom of the [RC6H5Cr]+ ion. Decarbonylation of the molecular ions is not affected by the nature of the substituent R. The results are interpreted in terms of the quasi-equilibrium theory of mass spectra.  相似文献   

10.
Ion-molecule reactions of chromium containing ions with arylsulfides have been studied in the gas phase and their products have been characterized by tandem mass spectrometry. C6H5SH and (C6H5)2S react as typical aromatic compounds and give rise to Cr+C6H5SR] and RC6H5Cr+QH5SR′ [R = H, CH3, CH(CH3)2; R′ = H, C6H5] ions. Metastable ion mass spectra of the latter species show that the metal is more strongly bound to diphenylsulfide than to alkylbenzenes. C6H5SSC6H5 reacts with chromium-containing ions to form only Cr+(C6H5SSC6H5). The decomposition characteristics of this ion and, in particular, the presence of a recovery signal in the neutralization-reionization mass spectrum are in keeping with the formation of a 1,2-dithia[2]cyclophane complex ion, which rearranges into a structurel(s) that contains Cr?S bond(s). No evidence was found for metal atom insertion into S?S, C?S, or S?H bonds.  相似文献   

11.
Compounds C6H5X(X ? F, Cl, Br, NO2, CN, OCH3) have been studied under chemical ionization conditions with ammonia as reagent gas. A pulsed electron beam and time resolved ion collection has allowed the determination of the reaction leading to the formation of [C6H5NH3]+ (m/z 94). [NH4]+ reacts with C6H5X(X ? F, Cl, Br) to yield m/z 94 but C6H5X (X ? CN, NO2) forms this ion only by reactions involving either [NH3]+ or [C6H5X]+. C6H5OCH3 does not form m/z 94.  相似文献   

12.
A mass spectrometer fast atom bombardment source has been used to synthesize, in the gas phase, the ion-molecule complexes of transition-metal ions (Ni+, CO+, Fe+, and Mn+) with α- or β-unsaturated alkenenitriles, RCH=CHCN (R=H, CH3, and C2H5) and CH3CH=CHCH2CN, and 2-methyl glutaronitrile. The metastable ion fragmentations of the complexes are monitored in the first held-free region by B/E linked scans. Surprisingly, an intense HCN loss via an intermediate (C n H2n ?2)?M+?(HCN) is observed for the complexes of the alkenenitriles. The metal ions significantly affect the fragmentation processes. The coexistence of both end-on and side-on coordination modes is suggested to explain the fragmentations.  相似文献   

13.
The chemical ionization mass spectra of several hydroxy steroids were obtained using methane as the reactant gas. The spectra are much less complex than the electron ionization spectra and little fragmentation of the steroid nucleus is observed. The major fragment ions involve the loss of water from [M + H]+. A 3-keto group in the steroids was characterized by an abundant [M + C2H5]+ ion. 5α- and 5β-Dihydrotestosterone could be distinguished by their spectra, with H2 as the reactant gas by marked differences in amounts of [M + H]+, [M + H ? H2O]+ and [M + H ? 2H2O]+. Substituted 3α-X-, 17 β-ol compounds, (X = Cl, Br) were also studied to obtain relative amounts of protonation at these sites.  相似文献   

14.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Cyclic polysulfides isolated from higher plants, model compounds and their electron impact induced fragment ions have been investigated by various mass spectrometric methods. These species represent three sets of sulfur compounds: C3H6Sx (x=1?6), C2H4Sx (x=1?5) and CH2Sx (x=1?4). Three general fragmentation mechanisms are discussed using metastable transitions: (1) the unimolecular loss of structural parts (CH2S, CH2 and Sx); (2) fragmentations which involve ring opening reactions, hydrogen migrations and recyclizations of the product ions ([M? CH3]+, [M? CH3S]+, [M? SH]+ and [M? CS2]); and (3) complete rearrangements preceding the fragmentations ([M? S2H]+ and [M? C2H4]). The cyclic structures of [M] and of specific fragment ions have been investigated by comparing the collisional activation spectra of model ions. On the basis of these results the cyclic ions decompose via linear intermediates and then recyclizations of the product ions occur. The stabilities of the fragment ions have been determined by electron efficiency vs electron energy curves.  相似文献   

16.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

17.
Cyclisation of New Trimethylsilylalkylaminohalosilanes Compounds of the composition RSiCl2NR′SiMe3 (R = Cl, CH3, C2H5, C6H5; R′ = CH3, C2H5, C(CH3)3) are obtained by the reaction of silicon halides with the lithium salts of silylamines. Under suitable experimental conditions the reaction leads to the formation of the corresponding Si? N four- and six-membered ring systems (RSiHalNR′)n (Hal = F, Cl; n = 2 or 3) under elimination of trimethylhalosilane. The i.r., mass, 35Cl-n.q.r., 1H and 19F-n.m.r. spectra of these compounds are reported.  相似文献   

18.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

19.
The mass spectra of the methyl-, trideuteromethyl-, ethyl- and pentadeuteroethylethers of 2,2′-bis-trimethylsilylbenzhydrol are reported. The most significant ions arise from the [M – CH3]+ ion, formed by loss of a methyl radical from one of the trimethylsilyl groups. After ring formation by interaction of the siliconium ion centre with an aromatic nucleus, the ion loses (CH3)3Si? OR (R = CH3, C2H5, CD3 and C2D5), giving ion m/e 223. The fragment (CH3)3Si? OCH3 is also eliminated in the four ethers investigated from the ion [M – R]+. Attack of the siliconium ion. Indications are found for a transannular hydrogen/deuterium rearrangement and a transannular elimination reaction. The intensity of some peaks in the spectra are discussed in relation to group R.  相似文献   

20.
Foest  R.  Basner  R.  Schmidt  M. 《Plasmas and Polymers》1999,4(4):259-268
A technique is described, which supports the plasma mass spectrometry to distinguish possible sources of ion peaks found in the mass spectrum of the neutral gas. The proposed method is based on the measurement of the kinetic energy which the fragment ions gain during dissociative ionization by electron impact inside the ion source of the spectrometer. This approach is of special interest for applications in plasma processes such as plasma assisted deposition or etching techniques where complicated molecules are involved. The principle of the method is demonstrated and discussed for the examination of various fragment ions as CH3 +, C2H2 +, C2H3 +, C2H5 + and CH3O+ in the neutral gas spectrum of an 13.56 MHz rf discharge in an Argon-Tetraethoxysilane (TEOS) mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号