首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The reactivity of 1-phenylbutadiene (1-PBD) in cationic polymerization and the monomer structure were investigated. 1-PBD polymerized at ?78°C in several solvents initiated by cationic catalysts such as stannic chloride and tungsten hexachloride. The polymerizations proceeded predominantly via 3,4-type propagation mode, and gave low molecular weight polymers. More than one double bond of 1-PBD was consumed during the polymerizations, probably due to transfer and cyclization reactions. 1-PBD was several times as reactive as styrene and trans-1,3-pentadiene in copolymerizations. The Hammett plots of reactivities of ring-substituted 1-PBD in cationic polymerization gave the p-value of -1.20, which is 0.6 times that of styrene. The 1H and 13C NMR chemical shifts of ring-substituted 1-PBD were measured and discussed in relation to the reaction mechanism.  相似文献   

2.
The reactivity of trans-1-alkoxybutadienes in cationic homopolymerization and copolymerizations and structure of the polymers produced were investigated. 1-Ethoxybutadiene is polymerized easily at ?78°C by various acidic catalysis. The reactivity of 1-ethoxybutadiene was similar to that of ethyl vinyl ether. The polymers produced possessed molecular weights of several thousands, and were composed of 70–95% 1,4 structure and 5–30% 3,4 structure. In the copolymerization of ethyl vinyl ether (M1) with 1-ethoxybutadiene at ?78°C in toluene by boron trifluoride diethyl etherate, r1 = 1.15, r2 = 2.62. From the Hammett plot of the relative reactivities of alkoxybutadienes (alkoxy: CH3O, C2H5O, i-C3H7O), the reaction constant p* was determined to be ?2.9. Results of the present study were compared with those of various butadiene derivatives.  相似文献   

3.
4.
Specially designed allylic onium salts with different hetero‐atoms and various substituent patterns at the allylic double bond have been shown to be very efficient initiators for cationic polymerization. They can be used alone or in conjunction with radical initiators. The mechanism of initiation involves radical formation, radical addition and fragmentation. In some cases, oxidation reactions were found to contribute to the formation of initiating species. In this work, the role of structural parameters onto reactivity is discussed.  相似文献   

5.
6.
The stereospecificity of benzyl derivatives of trivalent titanium (Rn TiX3–n, where X = Cl, I, n = 1–3) in butadiene polymerization was studied. It was found that dibenzyltitaniumiodide is an efficient catalyst of the 1,4-cis-polymerization of butadiene and that tribenzyltitanium forms 1,2-units. In both cases all the titanium-benzyl bonds participated in the initiation reaction and the active sites were polymeric analogues of crotyl derivatives of Ti(III); namely, bis-π-oligobutadienyltitaniumiodide and tris-π-oligobutadienyltitanium. These sites are stable at room temperature. The nature of the active sites in the polymerization of butadiene with Ziegler's 1,4-stereo-specific systems Til4 (or Til2Cl2) + AIR3 are described.  相似文献   

7.
The equilibrium between fluoral in dichloromethane solution and live condensed liquid polyfluoral has been investigated between 22 and 43°C. Equilibrium monomer concentrations gave: ΔHac°(298 K) = -50-8 ± 2·3 kJ mol?1 and ΔSsc° (298 K) = -142·7 ± 7·4 J K-1 mol-1. With the aid of calibration and monomer vaporization data, thermodynamic values for the polymerization of liquid monomer to liquid polymer were also calculated: ΔHtc° (298 K) = -47 ± 3 kJ mol-1 and ΔS1e° (298 K) = -97 ± 10 J K-1 mol-1.  相似文献   

8.
The living cationic polymerization of 6‐tert‐butoxy‐2‐vinylnaphthalene (tBOVN), a vinylnaphthalene derivative with an electron‐donating group, was achieved with a TiCl4/SnCl4 combined initiating system in the presence of ethyl acetate as an added base at –30 °C. The absence of side reactions at low temperature was confirmed by 1H NMR analysis of the resulting polymer. In contrast to this controlled reaction at –30 °C, reactions performed at higher temperature, such as 0 °C, frequently involved unwanted intramolecular or intermolecular Friedel–Crafts reactions of naphthalene rings due to the high electron density of these rings. The cationic polymerization of 6‐acetoxy‐2‐vinylnaphthalene, a derivative with an acetoxy group, was also controlled under similar conditions, but chain transfer reactions were not completely suppressed during the polymerization of 2‐vinylnaphthalene. The glass transition temperature (Tg) of the obtained poly(tBOVN) was 157 °C, a value higher by 94 °C than that of the corresponding styrene derivative. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4828–4834  相似文献   

9.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

10.
Photoinitiated cationic polymerization by photosensitization of diphenyliodonium and triphenylsulfonium salts is shown to proceed by two distinct electron transfer process: (1) direct electron transfer from excited-state photosensitizers and (2) indirect electron transfer from photogenerated radicals. The efficiency of the former process is attributed to the instability of the reduction products (from diphenyliodonium and triphenylsulfonium salts), which dissociate in competition with undergoing energy-wastage reverse electron transfer. Amplification of photons in the production of protons (or other reactive cations) is postulated to account for the high quantum yields observed in the latter process. Potential advantages of utilizing the indirect redox process in the design of UV curable hybrid systems, which contain functionality for both radical and cationic polymerization, are noted. The results also provide evidence against the importance of triplet states of the onium salts in photoinitiator activity.  相似文献   

11.
To determine the effect of the dissociation of propagating species on the relative reactivity of monomers, 2-chloroethyl vinyl ether was copolymerized with p-methoxystyrene or with p-methylstyrene by using iodine in various solvents at 0°C. A common-ion salt (tetra-n-butylammonium iodide or tetra-n-butylammonium triiodide) was added to these copolymerization systems in a polar solvent to depress the dissociation of the propagating species. The addition of a common-ion salt increased the vinyl ether content in the copolymer. The more the dissociation of propagating species was depressed, the more the vinyl ether content in the copolymer increased. This effect of common-ion salt was in agreement with that of decreasing solvent polarity which yielded vinyl ether-rich copolymer as well. Therefore, the change of the monomer reactivity ratio by the solvent polarity, which used to be explained in terms of a selective solvation, must be reconsidered from the viewpoint of varying degrees of the dissociation of propagating species.  相似文献   

12.
A high molecular weight polybutadiene was prepared in hexane solvent by using alkali metal (Li, Na, K) and metal tert-butoxide (Li, Na, K) as a polymerization initiator. The microstructure of polybutadiene varies, depending on the type of modifiers and polymerization and temperatures. The results and mechanistic implications of this study are discussed.  相似文献   

13.
A common-ion salt, tetra-n-butylammonium perchlorate, was found to affect the monomer reactivity ratios in the cationic copolymerization by acetyl perchlorate of styrene with p-methylstyrene and of 2-chloroethyl vinyl ether with p-methylstyrene, but not those for the copolymerization of 2-chloroethyl vinyl ether with isobutyl vinyl ether. In the copolymerization of p-methylstyrene with styrene or with 2-chloroethyl vinyl ether, the addition of the common-ion salt in a polar solvent shifted the monomer reactivity ratios to those in a less polar solvent. The molecular weight distribution analysis of the copolymer suggested that the addition of the common-ion salt depresses the dissociation of propagating species. Therefore, it was concluded that a propagating species with a different degree of dissociation shows a different relative reactivity towards two monomers. The nature of propagating species was also discussed on the basis of the common-ion effect on the monomer reactivity ratios in various solvents.  相似文献   

14.
15.
The effects of photoinitiator structure and variations in the experimental parameters on the rate and extent of the photoinitiated cationic polymerization of propenyl ether monomers were studied. It was found that the photoinitiators can be divided into two classes: those which exhibit an induction period and those which do not. It was demonstrated that in those propenyl ether polymerizations using iodonium salts and certain sulfonium salts which do not have an induction period, a free radical chain-induced decomposition of the onium salt takes place. The reactivity of a particular onium salt photoinitiator was shown to be related to its reduction potential. It was also shown that the structure of the monomer plays a major role in the free radical induced decomposition reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Stereospecificity of tetrabenzyltitanium and its halogeno-derivatives in the polymerization of butadiene has been investigated. The content of 1,2-units decreases while the content of 1,4-cis-units increases in the resulting polybutadiene for the series (C6H5CH2)4Ti, (C6H5CH2)3TiCl, (C6H5CH2)3TiBr, (C6H5CH2)3Til. Tribenzyltitanium iodide exhibits high stereospecificity for the formation of 1,4-cis-units and their content reaches 94–97%. By determining the number of benzyl groups linked with titanium at different degrees of conversion, it has been shown that the active centre formed from tetrabenzyltitanium contains three benzyl groups and one polymer chain. Two benzyl groups, one iodine atom and one polymer chain are attached to a titanium atom in the active centre for the case of tribenzyltitanium iodide. Electron donors sharply change the stereospecificity of tribenzyltitanium iodide: the content of 1,2-units in the polymer rises to 68%.  相似文献   

17.
α-End-functionalized polymers and macromonomers of β-pinene were synthesized by living cationic isomerization polymerization in CH2Cl2 at −40°C initiated with the HCl adducts [ 1; CH3CH(OCH2CH2X)Cl; X = chloride ( 1a ), acetate ( 1b ), and methacrylate ( 1c )] of vinyl ethers carrying pendant substituents X that serve as terminal functionalities. In conjunction with TiCl3(OiPr) and nBu4NCl, these functionalized initiators led to living β-pinene polymerization where the carbon–chlorine bond of 1 was activated by TiCl3(OiPr). Similarly, end-functionalized poly(p-methylstyrene)-block-poly(β-pinene) were also obtained. 1H-NMR analysis showed that the polymers possess controlled molecular weights (DP n = [M]0/[ 1 ]0) and number-average end functionalities close to unity. The end-functionalized methacrylate-capped macromonomers form 1c were radically copolymerized with methyl methacrylate (MMA) to give graft copolymers carrying poly(β-pinene) or poly(p-methylstyrene)-block-poly(β-pinene) as graft chains attached to a PMMA backbone. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1423–1430, 1997  相似文献   

18.
Cationic polymerization of mono- and disubstituted derivatives of 1,4-benzoquinine and allylamine in the presence of hydrochloric acid was studied. The optimal conditions were found and the kinetic parameters of the process were evaluated.  相似文献   

19.
The colloidochemical properties of new cationic surfactants synthesized from fatty acids of palm oil and diethylenetriamine are first studied. It is found that, at solution pH below 6.0, the examined surfactants exist mainly as salts formed from protonated surfactant molecules and residues of strong acids, e.g., hydrochloric acid. In the pH range above 7.0, the protonated and nonprotonated forms of the surfactants are at equilibrium, which shifts to the nonprotonated form with an increase in pH. The analysis of interfacial tension isotherms shows that the minimum values of the interfacial tension are achieved at pH 7.0 when the concentrations of the protonated and nonprotonated forms of surfactant molecules are equal. New cationic surfactants are used as emulsifiers in emulsion polymerization of styrene. It is found that stable polystyrene latexes with narrow particle size distributions and high positive ζ potentials (as high as +68.4 mV) can be obtained at styrene concentration in an initial emulsion of 25 vol % and surfactant concentration in an aqueous phase of 2 wt %. A hydrogen peroxide-iron(II) salt redox system is used as an initiator of polymerization at component concentrations equal to 5 and 0.05 wt % of the monomer, respectively.  相似文献   

20.
Alternating copolymerizations of butadiene with propylene and other olefins were investigated by using VO(acac)2–Et3Al–Et2AlCl system as catalyst. Butadiene–propylene copolymer with high degree of alternation was prepared with a monomer feed ratio (propylene/butadiene) of 4. Alternating copolymers of butadiene and other terminal olefins such as butene-1, pentene-1, dodecene-1, and octadiene-1,7 were also obtained. However, the butadiene–butene-2 copolymerization did not yield an alternating copolymer but a trans-1,4-polybutadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号