首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of chain transfer was studied for the radiation-induced polymerization of ethylene in precipitating media, namely n-butyl alcohol, tert-butyl alcohol and their mixtures. The affinities of those solvents for polyethylene are similar, but the chain-transfer coefficient of n-butyl alcohol is larger than that of tert-butyl alcohol. The polymerizations were carried out in a reactor of 100 ml under a pressure of 300 kg/cm2, at 60°C, dose rate of 3.07 × 104–1.75 × 105 rad/hr in the presence of 50 ml of solvents. The polymerization in tert-butyl alcohol shows the kinetic behavior characteristic of a heterogeneous polymerization, such as rate acceleration, high dose rate dependence of polymerization rate, and low dose rate dependence of polymer molecular weight, whereas the polymerization in n-butyl alcohol does not exhibit such behavior and gives polymer having a molecular weight much lower than that of polymer obtained in tert-butyl alcohol. The polymer formed in tert-butyl alcohol exhibits a bimodal molecular weight distribution measured by gel permeation chromatography. In mixed tert-butyl alcohol and n-butyl alcohol solvent, with increasing fraction of n-butyl alcohol, the two peaks not only shift to lower molecular weight but the higher molecular weight peak becomes relatively small. Eventually, the polymer formed in n-butyl alcohol exhibits a unimodal distribution. Those results are well explained on the basis of the proposed scheme for heterogeneous polymerization.  相似文献   

2.
The effects of temperature on the radiation-induced polymerization of ethylene in bulk and in the presence of ethyl alcohol, n-butyl alcohol, tert-butyl alcohol, cyclohexane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were studied. The changes of the amounts of polymerized monomer with the reaction temperature were different from each other in these reaction systems, especially in the range lower than 60–80°C. At temperatures lower than 60–80°C, as the reaction temperature increases, the amount of polymerized monomer decreased in bulk and in the presence of tert-butyl alcohol. The amount was almost constant in the presence of ethyl alcohol and 2,2,4-trimethylpentane, and it increased in the presence of n-butyl alcohol, cyclohexane, and 2,2,5-trimethylhexane. However, in the temperature range higher than 60–80°C, the amount of polymerized monomer increased with increasing temperature in every reaction system except for bulk polymerization. The molecular weight of polymer decreased with increasing temperature in every reaction system except at temperatures lower than 25°C. The molecular weight of polymer formed in bulk, in tert-butyl alcohol, and also in 2,2,4-trimethylpentane were relatively higher than that in other reaction systems. A bimodal molecular weight distribution was observed for the polymer formed in bulk and in tert-butyl alcohol at 40–60°C. These results are discussed in connection with the heterogeneity of the reaction system. The differences due to temperature in each reaction system are explained as due to the difference in affinity of the reaction system for the propagating chain and in the facility of chain transfer to the medium.  相似文献   

3.
The radiation-induced heterogeneous polymerization of methyl methacrylate in various precipitants, mainly methyl alcohol, was carried out, and the effects of reaction conditions on the polymerization behavior and the molecular weight distribution of polymer were studied. Bimodal molecular weight distributions were found for the polymer produced by the heterogeneous polymerizations in methyl alcohol and in tert-butyl alcohol. The apparent activation energy is 1.0 and 4.5 kcal/mole, respectively, for the polymerization at a monomer concentration of 10 vol-% in methyl alcohol above and below 35°C. The polymerization at a monomer concentration lower than 40 vol-% in methyl alcohol proceeded with the precipitation of polymer. The dose rate exponent of the mean rate of heterogeneous polymerization decreased from 0.5 to a smaller value as the polymerization progressed. The ratio of the two peaks in the bimodal molecular weight distributions of polymer produced in methyl alcohol was affected by the reaction conditions. These results show the coexistence in the polymerizations of two different physical states of propagating chain, a loose state and a rigid one. The reaction scheme is discussed in connection with the physical factors which affect the solubility or the mobility of propagating chains, and the rate of elementary reactions, which influences the degree of propagating chains.  相似文献   

4.
The gamma-radiation-induced polymerization of ethylene in the presence of 13–30 ml of tert-butyl alcohol was carried out under a pressure of 120–400 kg/cm2 at a dose rate of 1 × 103 to 2.5 × 104 rad/hr at 30°C with a 100 ml reactor. The polymerization rate and the molecular weight of the polymer increased with reaction time and pressure and decreased with amount of tert-butyl alcohol. The polymer yield increased almost proportionally with the dose rate, while the molecular weight was almost independent of it. These results were graphically evaluated, and the rate constants of initiation, propagation, and termination for various conditions were determined. No transfer was observed. On the basis of these results the role of tert-butyl alcohol in the polymerization is discussed.  相似文献   

5.
Gamma-radiation-induced polymerization of ethylene in alcohols such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and n-pentyl alcohols was carried out under a pressure of 400 kg./cm.2at 30°C. at a dose rate of 1.4 × 105 rad/hr. in a batch reactor of 100 ml. capacity. The yield and molecular weight of polymer formed in the alcohols (except tert-butyl alcohol) were much lower than those of the bulk polymerization under the same conditions, whereas the addition of tert-butyl alcohol increased the yield and reduced the molecular weight. From the infrared spectra of the polymers and those of the bromination products it was concluded that only primary OH exists in the polymer formed in methyl alcohol and that both primary and secondary OH are in the polymer formed in other primary alcohols. Both secondary and tertiary OH were observed in the polymer when the secondary alcohols were used, and only tertiary OH in the case of tert-butyl alcohol. These polymers were found to contain small amounts of vinylidene unsaturation and methyl group. On the basis of these results the roles of the alcohols in the polymerization are discussed.  相似文献   

6.
Polyethylenes were prepared by γ-ray-induced polymerization in ethyl and n-butyl alcohols, tert-butyl alcohol containing 5 vol-% of water, 2,2,5-trimethylhexane, 2,2,4-trimethylpentane, and cyclohexane in the temperature range 25–90°C. The morphology of the polymers as-polymerized and studied by electron microscopy depends on three factors through the degree of undercooling: the affinity of the solvent, polymerization temperature, and the polymer molecular weight. Large lamellar crystals are formed even in the alcohols when at least two of them are chosen properly.  相似文献   

7.
The radiation-induced heterogeneous polymerization of ethylene in ethyl alcohol was carried out in a reactor with a capacity of 100 ml under the following reaction conditions: temperature, 24 ± 3°C; pressure, 200–400 kg/cm2; amount of ethyl alcohol, 30–70 ml; dose rate, 3.7 × 104?1.05 × 105 rad hr. The effects of amount of ethyl alcohol, pressure, and dose rate on the rate of polymerization at the steady state, the amount of polymerized monomer, the molecular weight of polymer, and the number of polymer chains were studied compared with the results obtained in the polymerization in tert-butyl alcohol. It was found that there is an acceleration period in the early stage of reaction followed by a steady state. The rate of polymerization was maximum when about 50 ml of ethyl alcohol was used. The molecular weight of polymer increased with a decrease in the amount of ethyl alcohol. The dependences of pressure (p) and dose rate (I) on the rate of polymerization at steady state (Rs) and the molecular weight of polymer (M?n) were expressed as follows; Rsp0.74, M?np0.3?0.4, Rs ∝ I0.9 and M?nI?0.1 ?0.0. The results were analyzed by a kinetic treatment based on a reaction mechanism containing both first-and second-order terminations. The rate constant of first-order termination by radical occlusion was considerably larger than that in the polymerization in tert-butyl alcohol, because the affinity of ethyl alcohol for polyethylene is smaller than that of tert-butyl alcohol. It was found that chain transfer to ethyl alcohol takes place easily and the G value of ethyl alcohol for initiation is larger than 1.5.  相似文献   

8.
The photo-controlled/living radical polymerization of tert-butyl methacrylate was performed using a (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator and a 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) mediator in the presence of a (4-tert-butylphenyl)diphenylsulfonium triflate photo-acid generator. The bulk polymerization was carried out at 25 °C by irradiation with a high-pressure mercury lamp. Whereas the polymerization in the absence of MTEMPO produced a broad molecular weight distribution, the MTEMPO-mediated polymerization provided a polymer with a comparatively narrow molecular weight distribution around 1.4 without elimination of the tert-butyl groups. The living nature of the polymerization was confirmed on the basis of the linear correlations for the first-order time–conversion plots and conversion–molecular weight plots in the range below 50% conversion. The block copolymerization with methyl methacrylate also supported the livingness of the polymerization based on no deactivation of the prepolymer.  相似文献   

9.
Di-tert-butyl maleate (DtBM) did not polymerize with 2,2′-azobis(isobutyronitrile) as a radical initiator, but DtBM easily homopolymerized via a monomer-isomerization radical polymerization mechanism to give a high molecular weight polymer when morpholine was added into the polymerization system as an isomerization catalyst. The feature of the monomer-isomerization polymerization of DtBM was investigated in detail. The polymer obtained was confirmed to consist of a poly(tert-butoxycarbonylmethylene) structure similar to that from di-tert-butyl fumarate. Subsequent pyrolysis of the resulting polymer at 180°C is a useful route to synthesis of a high molecular weight poly(fumaric acid). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The growth center in the anionic polymerization of methacrylic esters is stabilized with alkaline alkoxides, sodium tert-butoxide in particular. The lifetime of the growth center was investigated in the polymerization of methyl methacrylate by evaluating yield and molecular weight distribution of the polymer formed when the monomer was added in two doses. The average lifetime of the original growth center stabilized by sodium tert-butoxide at 20°C under the given conditions was longer than several minutes. The stabilization of the growth center was also used in the stepwise copolymerization of n-butyl methacrylate and methyl methacrylate. The copolymer thus obtained in high yield was characterized as a block copolymer on the basis of its solubility, nuclear magnetic resonance (NMR) spectra, and measurements of the complex shear modulus.  相似文献   

11.
The polymerisation of methyl methacrylate (MMA) using triisobutylaluminium/tert-butyllithium in hydrocarbon at 0°C and −78°C has been investigated by matrixassisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS). Although the system gives extremely good control over molecular weight and narrow molecular weight distribution, initiation of polymerization can be complicated by formation of small amounts of tert-butyl isoprenyl ketone ( 1 ), and termination of polymerization can occur by end cyclisation of the end unit of 3 . Both complications in initiation and termination can be avoided by suitable reaction conditions. Incorporation of 1 is suppressed by increasing the alkylaluminium content and by higher temperature. Termination by cyclisation has been found to occur over much longer time scales than propagation and can therefore be avoided by controlled termination after the appropriate reaction time.  相似文献   

12.
Radical polymerization of isopropyl tert-butyl fumarate (iPtBF) and monomer-isomerization radical polymerization of isopropyl tert-butyl maleate (iPtBM) were investigated with 2,2′-azobisisobutyronitrile as initiator in the presence and absence of morpholine (Mor) as isomerization catalyst. It was found that iPtBF gave high molecular weight polymers in high yield as previously observed for diisopropyl fumarate (DiPF) and di-tert-butyl fumarate (DtBF). It was confirmed that iPtBF produced by in situ monomer isomerization of iPtBM homopolymerized to give a polymer. Radical copolymerization of iPtBM with styrene in the presence and absence of Mor was also performed and monomer reactivity ratios obtained were compared. From the kinetic study of the isomerization of iPtBM, it was revealed that the isomerization rate showed first-order dependence on the concentration of iPtBM and Mor, and that the apparent activation energy was 29.4 kJ/mol. On pyrolysis of the poly(iPtBF) at 180°C, isobutene and isopropanol were eliminated rapidly to yield polymer containing carboxyl groups and anhydrides. The pyrolytic behavior was different from that of a copolymer of DiPF with DtBF.  相似文献   

13.
The reaction of glycerol with tert-butyl alcohol in the liquid phase on acid Amberlyst-type ion-exchange resins was studied. The influence of temperature, mole ratio n(TBA)/n(G), water and swelling of gel, and macroreticular type of polymer catalysts on etherification reaction was investigated. The most favourable reaction temperature is 75°C. The conversion of glycerol and yield of glycerol tert-butyl ethers has increased with the mole ratio n(TBA)/n(G). Dry form of macroreticular catalysts provided the best results. Etherification reaction of glycerol with isobutylene in non-aqueous conditions gives the highest yield of desired ethers. The influence of water was studied. The gel forms of ion-exchange resins have very low catalytic activity. It can be concluded that water has an inhibition effect on ion-exchange resins. By comparing the gel and macroreticular forms of Amberlyst ion-exchange resins it can be concluded that very acid forms of macroreticular ion-exchange resins with a high degree of crosslinking are more active catalysts for the studied reaction due to their pores which are sufficiently large so that the voluminous tert-butyl ethers of glycerol can be formed. It was estimated that tert-butyl alcohol as tert-butylation agent is not suitable for etherification of glycerol with the formation of di-and triethers.  相似文献   

14.
The radiation-induced polymerization of ethylene in cyclohexane was carried out in a reactor of 100 ml capacity under a range of temperature of 25–150°C, dose rate of 4.1 × 104–2.9 × 105 rad/hr, pressure of 200 kg/cm2, and amount of cyclohexane of 20–90 ml. The polymerization was found to proceed at a steady state from the beginning. The polymerization rate is maximum at ca. 50 ml of cyclohexane. The dose rate exponent of the polymerization rate was 0.6 at every temperature from 25 to 150°C. The polymer molecular weight is in the range of 103–104, independent of dose rate, and decreases with increasing amount of cyclohexane. The molecular weight distribution is unimodal and narrow. Kinetic analysis of these results indicates that the polymerization proceeds via a simple scheme of homogeneous polymerization and the polymer molecular weight was determined by the chain transfer reaction which takes place mostly with cyclohexane. The unimodal and narrow molecular weight distribution is also consistent with the homogeneous polymerization scheme.  相似文献   

15.
α-Methoxyphenylmethylium hexachloroantimonate was used as a novel initiator for the polymerization of α,β-disubstituted oxiranes such as cyclohexene oxide (CHO) and 2-butene oxide (trans and cis) (2-BO) at ?78°C with dichloromethane or dichloromethane-toluene mixtures as solvents. The CHO polymerization mixture became turbid and the polymer precipitated in dichloromethane. The CHO polymerization proceed quantitatively in dichloromethane–toluene mixtures. The molecular weight distribution of polyCHO obtained was bimodal regardless of the solvent used. The polymerization of trans-2-BO was heterogeneous in both dichloromethane and dichloromethane–toluene mixture. The polymerization mixtures of cis-2-BO were transparent but reached a limit yield which was less than the polymer yield of trans-2-BO. Furthermore, the microstructure of the poly2-BOs were analyzed by Vandenberg's method and the results confirmed Vandenberg's finding that inversion of configuration occurs in the propagation step.  相似文献   

16.
The dependence of the dose rate on the rate of radiation-induced polymerization of ethylene in tert-butyl alcohol containing 5 vol-% water was studied. The reaction was carried out by use of a reactor with a capacity of 100 ml under the following conditions: pressure, 200 kg/cm2; temperature, 24 ± 3°C; dose rate, 3.7 × 104?1.6 × 105 rad/hr; amount of medium, 70 ml. The dose rate exponents for rate of the polymerization, the molecular weight, and the number of polymer chain were found to be about 0.8, ?0.1, and 0.9, respectively. These results were well explained with kinetic results (obtained by a novel analytical method) for the polymerization which contain both first-order and second-order terminations for the concentrations of propagating radical. The individual values of the rate constants in each elementary reaction were also obtained.  相似文献   

17.
The homopolymerization of methylated-β-cyclodextrin (me-β-CD) host–guest compound of tert-butyl methacrylate (1a) is described. We investigated the free radical polymerization of the complexed monomer (1a) and of the free monomer (1) at ambient and high temperature. Poly(tert-butylmethacrylate) synthesized via the cyclodextrin mediated method exhibited number-average molecular weights ranging from 12,000–60,000 g/mol with polydispersities from 1.9–3.1. The polymerizations without cyclodextrin show significantly lower yields in comparison with the cyclodextrin mediated polymerizations. Here, the polymer obtained is colloidal dispersed. At ambient temperature (20°C) no polymerization occurs in the absence of cyclodextrin, whereas, under the same conditions, the homopolymerization of the complexed monomer (1a) leads to polymerization with yields around 75%.  相似文献   

18.
Dependences of the molecular weight distribution and stereochemical regulation of the polypropylenes produced with VCl4–AlEt2Cl catalyst on the polymerization temperature were examined. The molecular weight distributions of the polymers obtained at temperatures below ?40°C were unimodal and narrow (M w/M n ≤ 2). The molecular weight distributions obtained at higher temperatures (above ?21°C) were bimodal with one narrow distribution and one wide one (M w/M n > 2), and the polymer fraction of the wide distribution increased with the polymerization temperature. The fractional amount of ? (CH2)2? groups in the polymers, which corresponds to tail-to-tail linkage of two propylene units, increased to a maximum at ?21°C followed by a gradual decrease with the polymerization temperature. The production of isotactic polymers was confirmed at temperatures above ?21°C. From these data, it is concluded that only the homogeneous form of the catalyst system is responsible for the polymerization at temperatures below about ?21°C while the heterogeneous form appears and catalyzes the polymerization together with the homogeneous one at temperatures above ?21°C.  相似文献   

19.
The effects of pressure of the radiation-induced polymerization of ethylene in tert-butyl alcohol were studied. The reaction was carried out by use of a reactor with a capacity of 100 ml under the following conditions; pressure, 60–400 kg/cm2; temperature, 24 ± 3°C; dose rate, 2.0 × 104?1.6 × 105 rad/hr; amount of medium (tert-butyl alcohol containing 5 vol-% water), 70 ml. The results of polymerization were analyzed by a kinetical treatment based on a reaction mechanism with both first- and second-order terminations for the concentration of propagating, radical. On the basis of the kinetical treatment the rate constants of each elementary reaction at several pressures were determined, and the activation volumes of elementary reactions were obtained and are discussed in connection with the reaction mechanism. Consequently, the rate constants of propagation, first-order termination, and second-order termination at pressure p and at 24°C were expressed by,   相似文献   

20.
A novel fluorine-containing polymer, poly[N-(2,3,4,5,6-pentafluorophenyl)maleimide], was prepared by the anionic polymerization of N-(2,3,4,5,6-pentafluorophenyl)maleimide (PFPMI). Anionic polymerization with alkali metal tert-butoxides gave poly(PFPMI) in 14–32% yield. Phenyllithium and sec-butyllithium also afforded poly(PFPMI). No polymer was obtained with a radical initiator such as 2,2′-azoisobutyronitrile. The polymerization took place only via the vinylene group of PFPMI and no appreciable side-reaction occurred. The obtained poly(PFPMI) shows unimodal molecular weight distribution and begins to decompose at 325°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号