首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Ab initio SCF calculations at the HF/3-21G level and semi-empirical MNDO calculations have been used to locate the stationary points on the CF2N2 energy surface. Perfluorodiazomethane is predicted to be most stable isomer, but perfluorodiazirine is predicted to lie only ca 41 kJ higher in energy at the SCF level. There are significant differences between the ab initio and MNDO results for the ordering of some of the isomers. Frequency calculations give results in good agreement with the limited experimental data on these molecules.  相似文献   

2.
Ab initio SCF molecular orbital calculations have been performed to ascertain the conformational preferences of protonated, neutral, and deprotonated amidine [HC(?NH)NH2], using the 3-21G split valence basis set. The states of eight stable species, eight transition states, and four higher-order saddle points have been determined by complete geometry optimization utilizing analytic energy gradient techniques. Protonation at the amidine ?NH is preferred over the –NH2 site by 37.1 kcal/mol. Neutral amidine has rotational barriers of 9.6 and 11.7 kcal/mol for the HN?CN cis and trans isomers, respectively, while all the stable HC(NH2)2+ and HC(NH)2? species possess torsional barriers larger than 23 kcal/mol. There is, however, essentially free C—N single-bond rotation in HC(?NH)NH3+, the calculated barriers being 0.7 and 1.8 kcal/mol for the cis and trans HN?CN isomers, respectively.  相似文献   

3.
The potential energy surface for the insertion of singlet methylene into H2 has been computed on theab initio SCF level as well as with inclusion of electron correlation by means of the CEPA method. The results are compared with those of previous semiempirical,ab initio SCF and CI calculations. The system is a prototype of a reaction where an allowed and a symmetry-forbidden path can compete. The electron correlation energy was found to be very different for different regions of the surface, but did not have much influence on the optimum reaction path. From the computed heat of the reaction, the heat of formation of singlet methylene was estimated to be 101.5 kcal/mol. According to the calculations the reaction does not need any activation energy.  相似文献   

4.
Ab initio SCF as well as pseudopotential calculations were performed for determining equilibrium structures and relative stabilities of several disilyne isomers. For the singlet state there are only two structures, the bridged and the silavinylidene carbene, which correspond to minima on the energy hypersurface. The most stable of the six isomeric structures investigated is the bridged conformer in the 1A1 electronic state, followed by the silavinylidene carbene in the 1A1 and 3A2 electronic states. Inclusion of electron correlation by MRD-CI calculations has no qualitative influence on the relative stabilities found in the SCF calculations.  相似文献   

5.
The performance of Atomic Natural Orbital (ANO) basis sets for calculations involving nonempirical core pseudopotentials has been studied by comparing the results for atomic and molecular nitrogen obtained using contracted ANO basis sets with those obtained using both the primitive set and a segmented one. The primitive set has been optimized at the SCF level for atomic N treated as a five-electron pseudo-atom, and consists of 7s and 7p primitive GTOs supplemented by 2d and 1f GTOs optimized at the CI level. From this primitive set three contracted [3s 3p 2d 1f] sets have been obtained. The first one has been derived from the ANOs of the neutral atom, the second has been obtained from an averaged density matrix and the third one is a segmented set. For the atom, the segmented set gives a zero contraction error at the SCF level as it must be in valence-only calculations. The ANO basis sets show some small contraction error at the SCF level but perform better in CI calculations. However, for the diatomic N2 molecule the ANO basis sets exhibit a rather large contraction error in the calculated SCF energy. A detailed analysis of the origin of this error is reported, which shows that the conventional strategy used to derive ANO basis sets does not work very well when pseudopotentials are involved.  相似文献   

6.
The potential surface for the reaction H2CO+H → HCO+ + H2 has been studied by ab initio SCF calculations, using gaussian-type basis functions. A saddle point on the surface has been found, and a reaction path is proposed to explain the observed release of kinetic energy. The energy of activation and ΔE for the reaction have been estimated.  相似文献   

7.
Anab initio study of the electronic structure of several 22-electrons molecules is presented. The equilibrium geometries of their ground state are calculated at the SCF level using the 6–31G basis set and are found to be in good agreement with the experimental geometries. The dissociation process of these molecules leading to the isoelectronic products CO or N2 on the one hand and BH3, CH2, NH and O on the other hand is studied. The least-energy dissociation paths of the ground states determined at the SCF level are compared on the basis of electron density interactions. The dissociation energies corresponding to the two lowest dissociation channels are calculated. In these calculations, the correlation energy is taken into account using a non-variational method developed previously. The calculated values of dissociation energies are in good agreement with the existing experimental values. The results permit to predict values for HNCO, BH3CO and CH2N2 and to confirm the instability of BH3N2.Aspirant du Fonds National Belge de la Recherche Scientifique.  相似文献   

8.
Potentially tautomeric 1,2,3,4-tetrahydro-5,7-dimethyl-6H-pyrrolo[3,4-d]pyridazine-1,4-diones and their fixed tautomeric forms have been studied in order to predict their tautomeric equilibrium constants and pKa values using semi-empirical AM1 quantum-chemical calculations at the SCF level in the gas phase and in aqueous solution. Hydroxy-oxo forms were found to be more stable than dioxo and dihydroxy forms. The results obtained from the tautomeric equilibria and basicity calculations are in good agreement with experimental data.  相似文献   

9.
Ab initio calculations using a small Gaussian basis set, including 3d orbitals on the sulphur atom, have been performed on the fluorosulphate radical and the related ions SO3F+ and SO3F?. A new SCF procedure is described and applied to the open shell cases discussed here. The results are compared with recent CNDO calculations and with the experimental transition energies of the radical.  相似文献   

10.
Anab initio study of the relative stability for the states2 A 1g and2 E g of C2H 6 + has been carried out. The results of the Open Shell Restricted Hartree-Fock calculations lead to assign the2 A 1 g as the ground state of the molecule in agreement with previous SCF calculations.The correlation energy associated to both states has been calculated within the correlation hole model and the results, contrary to those obtained from Configuration Interaction calculations, do not alter qualitatively the conclusions from SCF.  相似文献   

11.
Molecular core binding energies of the polymers formed by copolymerization of CF3NO with CF2?CF2, CF2?CFCl, and CF2?CFH, respectively, have been studied by means of ESCA. The results are interpreted in terms of CNDO/2 SCF MO calculations on some model systems. Some evidence for structural irregularity is found for the copolymers with CF2?CFCl and with CF2?CFH. The reaction mechanism for the polymerization is also discussed in terms of the experimental results and INDO SCF MO calculations.  相似文献   

12.
This letter reports the results of ab initio quantum chemical calculations on the C1s core levels of model systems for a number of oxygen containing polymers. Conformational effects were studied. SCF calculations have been carried out with STO-3G and 4-31G basis sets, and Koopmans' theorem was applied to obtain the core-level binding energies. To evaluate the performance of the procedure SCF calculations were carried out on polyacrylic acid. The existence of oxygen-induced secondary substituent effects in the XPS-(ESCA-)spectra is discussed. A comparison with semi-empirical CNDO/2 results from Clark and Thomas has been made.  相似文献   

13.
The exponential transformation of the molecular orbitals, that has been previously used to achieve a process with a convergence of quadratic quality in SCF closed-shell calculations [J. Chem. Phys. 72 , 1452 (1980)] has been extended to UHF determinantal wave functions built from different orbitals for different spins. Explicit formulas are given for the first and second derivatives of the energy to be varied. The method is illustrated by UHF calculations for systems described as standard singlets (Li2 and F2) or triplets (NH) at the RHF approximation level, as well as for CH, CH2, CH3 molecular fragments in their valence states.  相似文献   

14.
Ab initio SCF and CI calculations using a double-zeta plus polarization basis set have been carried out on the trichlorine radical Cl3 to determine its electronic structure. The minimum in energy is determined for a bent structure at a bond angle of 146° and bond lengths of 2.18 Å (SCF ) or 2.22 Å (CI ). At linear geometry a 2Πu state is found to be lowest, approximately 7 kcal above the bent minimum, followed by a 2g+ state, which is around 4 kcal higher. This situation suggests that already for low quantum numbers a complex vibrational pattern in the Cl3 infrared spectrum is to be expected due to spin-orbit coupling as well as coupling of electronic, vibrational, and rotational motion.  相似文献   

15.
The gas-phase reactions of NH(a1Δ) with H2 and selected saturated and unsaturated hydrocarbons have been studied over the 250-600 K temperature range. Olefin reactions proceed at near the gas kinetic collision rate and show no temperature dependence. H2 and saturated hydrocarbons show temperature-dependent reactions rates, with activation energies of = 0.8-2 kcai/mole. No evidence of electronic quenching of NH(a1Δ) to the ground state was observed with any of the hydrocarbons studied. First-order reactions rates, Arrhenius A factors and activation energies for the reactions are reported. We discuss a mechanistic interpretation of the kinetics in view of earlier kinetic and reaction-product studies and ab initio SCF Cl calculations.  相似文献   

16.
Two conformers of protonated pyruvate, CH3C+(OH)COO, with the OH group either trans or cis to the methyl group and the carboxylate group in the C? C? C plane have been studied using the ab initio SCF/3-21G method, as well as by some semiempirical AM1 calculations. Both ab initio SCF and AM1 curves for the potential energy as a function of the C? COO distance exhibit a minimum corresponding to a complex of methylhydroxycarbene, CH3COH, associated with carbon dioxide, but only the AM1 curves predict an inner minimum corresponding to a covalently bonded protonated pyruvate molecule with a C? COO distance of 1.6–1.7 Å. The two models also disagree on the dissociation pathway for pyruvic acid, with the AM1 calculations predicting formation of acetyl and HOCO radicals while the ab initio method predicts dissociation into methylhydroxycarbene and carbon dioxide following an initial intramolecular proton transfer. The weakly bound complexes of methylhydroxycarbene and carbon dioxide have been studied in some detail using ab initio SCF and MP2 methods in conjunction with 6-311G** basis sets, obtaining equilibrium geometries and vibrational frequencies. In addition, the lactone-type isomer of protonated pyruvate, which contains a C? C? O ring, was also studied. The conclusions of these calculations are consistent with those from earlier work using the smaller 3-21G basis set. The most stable complex is predicted to occur between trans-methylhydroxycarbene and carbon dioxide where substantial stabilization is provided by an OH ? OC hydrogen bond. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The ground-state potential curve for F2 has been obtained using large-scale MC SCF and CI methods. MC SCF curves were obtained with the CAS SCF method using a variety of sets of active orbitals. The main conclusion from the CAS SCF calculations is that the 2πu orbital is important. CI curves were obtained using the contracted CI method. The largest calculations contained 312000 configurations proper spin and space (d2h) symmetry. The main conclusions from the CI calculations are that the configuration XXX are important, otherwise errors in De of 0.3 eV and in re of 0.02 Å are found. The remaining errors at the CI level are 0.08 eV for De, 0.005 Å for re and less than 10 cm?1 for the lowest vibrational levels.  相似文献   

18.
Self-consistent Kohn–Sham density functional calculations have been carried out to study the structure of the ammonia dimer. The local-density approximation yields unusually large binding energy and short internitrogen distance compared with the experimental and more accurate theoretical data. The results from the Becke–Perdew gradient-corrected functionals are generally in good agreement with those at the SCF MP 2 level when the geometry is fully optimized with various large basis sets. With our best estimation, the staggered quasi-linear structure (Cs) is 0.6 kcal/mol lower in energy than the symmetric cyclic one (C2h). The hydrogen-bonded N—H bond in the staggered quasi-linear structure is found to be 0.008 Å longer than the N—H bond in ammonia. In our calculations, we could not find the minima on the energy surface corresponding to the two asymmetric cyclic structures suggested by microwave spectra and coupled pair functional calculations. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Ab initio molecular orbital calculations at SCF level with the 3-21G, 6-31G, and 6-31G** basis sets and CI level with the 6-31G basis set have been carried out for an isoelectronic series HX? CH?Y and X?CH? YH, where X, Y can be CH2, NH, and O. Optimized structures (3-21G and 6-31G**) for both tautomers and the 1,3 hydrogen shift transition states are reported. The relative stabilities of the isomers and the barriers of the 1,3 shift are discussed in terms of proton affinities and bond orders. It is shown that both the relative stabilities of the tautomers and the relative barrier heights can be explained qualitatively using simple proton affinity arguments and that the barrier heights are quantitatively related to bond orders.  相似文献   

20.
A symmetry-adapted multiconfiguration self-consistent field (MC SCF) approach aimed at calculations of high-symmetry molecules is proposed. The self-consistency procedure applicable to the molecular terms of any symmetry and multiplicity is developed. It holds the symmetry transformation properties of varied molecular orbitals, thus taking advantage of the relationships within the set of two-electron integrals through molecular invariants. For orbital optimization, a unified coupling operator is constructed on the basis of the pseudosecular method providing for efficient convergence to energy minimum. Based on the group-theory technique, computer codes have been developed for straightforward determination of the invariant expansions for two-electron integrals and configuration interaction (CI) matrix elements. Calculated in this way, the expansion coefficients are presented for the three-electron states that originate from joint t1u and t1g shells of an icosahedral fullerene C60, the case important for the calculations of anion C603− representing the charge state of the fullerene molecule in the superconducting ionic solids K3C60 or Rb3C60. The results of MC SCF calculations for lowest quasi-π-electronic states of C603− are discussed. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 293–304, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号