首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamides which contain succinamide units, ? NHCO? (CH2)2? CONH? were prepared by the ring-opening polyaddition of bissuccinimides with diamines at 200°C. in bulk. Nylon 24 and nylon 64 were prepared by the reaction of N,N′-ethylenedisuccinimide with ethylenediamine and of N,N′-hexamethylenedisuccinimide with hexamethylenediamine, respectively. It was suggested that the transamidation reaction by aminolysis influenced the detailed structures of the polymers prepared from N,N′-ethylenedisuccinimide and hexamethylenediamine and from N,N′-hexamethylenedisuccinimide and ethylenediamine. The detailed structures of the polymers are discussed on the basis of their melting points and x-ray diagrams. It is concluded that the polymers contain a crystalline portion of \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--}[{\rm NH \hbox{--} (CH}_2 {\rm)}_{\rm 2} {\rm \hbox{--} NHCO \hbox{--}}({\rm CH}_2)_2 {\rm \hbox{--} CONH \hbox{--}}({\rm CH}_2)_6 {\rm \hbox{--} NHCO \hbox{--}}({\rm CH}_2)_2 {\rm \hbox{--} CO\rlap{---}]} $\end{document} sequences.  相似文献   

2.
The reaction SO + SO →l S + SO2(2) was studied in the gas phase by using methyl thiirane as a titrant for sulfur atoms. By monitoring the C3H6 produced in the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm S} + {\rm CH}_3\hbox{---} \overline {{\rm CH\hbox{---}CH}_2\hbox{---} {\rm S}} \to {\rm S}_2 + {\rm C}_3 {\rm H}_6 (7) $\end{document}, we determined that k2 ? 3.5 × 10?15 cm3/s at 298 K.  相似文献   

3.
A useful synthesis of a series of new aromatic sulfone ether diamines, H2NC6H4O\documentclass{article}\pagestyle{empty}\begin{document}$\hbox{---}\hskip-5pt[\ {\rm C}_{\rm 2} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{--} {\rm ORO}\hbox{---}\hskip-5pt ]_n {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{---} {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm NH}_{\rm 2} $\end{document}, where n = 0, 1, 2…, which increases the tractability of polyimides, polyamide-imides, and polyamides, was developed. These diamines were prepared by condensing various proportions of sodium p-aminophenate, sodium bisphenates, and dichlorodiphenyl sulfone. The synthetic procedures are now refined to the point where simply coagulating these diamines into water yields high purity polymer-grade sulfone ether diamines. The latter have good tractability; and in some cases, it is possible to extrude and injection-mold these high temperature polymers.  相似文献   

4.
5.
The mechanism of dediazoniation of arenediazonium tetrafluoroborates in 2,2,2-trifluoroethanol (TFE) is strongly dependent on the concentration of added pyridine. The added base complexes with the diazonium ion and diverts it to a homolytic pathway. Complex formation is indicated by the disappearance of the \documentclass{article}\pagestyle{empty}\begin{document}$\raise1pt\hbox{---} \mathop {\rm N}\limits^ \oplus \equiv {\rm N}\raise1pt\hbox{---}$\end{document} stretching vibration and appearance of a new band at about 1640–1690 cm?1 ascribed to the \documentclass{article}\pagestyle{empty}\begin{document}$\raise1pt\hbox{---} {\rm N}\raise1pt\hbox{=\kern-3.45pt=} {\rm N}\raise1pt\hbox{---} \mathop {\rm N}\limits^ \oplus {\rm C}_5 {\rm H}_5$\end{document} system. UV. and NMR. results support this conclusion. Chemically induced dynamic nuclear polarization (CIDNP) experiments clearly implicate a radical-pair as an important intermediate in the decomposition of these complexes.  相似文献   

6.
ESR studies of ultraviolet-irradiated polyethylene (PE) were carried out. Irradiation effects different from those of high-energy radiation are observed. Ultraviolet radiation is absorbed selectively, and especially in carbonyl groups in PE produced by oxidation. Radicals produced were identified as \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CH}_2 \hbox{---}$\end{document}. Some radicals giving a quintet signal stable at room temperature were also observed but remained unidentified. The radical \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} undergoes a mutual conversion with the acyl radical:   相似文献   

7.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

8.
The new polyoxotungstates H2O (1), · 28H2O (2) and H2O (3) were synthesized in aqueous solution and characterized by IR and Raman spectroscopy, energy dispersive X-ray fluorescence and single-crystal X-ray analysis. The anions in 1 and 2 are the first structurally characterized sandwich-type polyoxoanions which contain trivalent manganese atoms. The manganese atoms are coordinated by four oxygen atoms of two Keggin fragments and one water molecule, forming a square pyramid. The manganese(II) containing anions in 3 are linked via Mn–O–W-bonds, forming a two-dimensional network.Dedicated to Prof. M.T. Pope on the occasion of his retirement.  相似文献   

9.
Polycarboxyhydrazides essentially of the type \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm C}_{10} {\rm H}_8 {\rm Fe}\hbox{---}{\rm CONHNHCO}\rlap{--}]_n $\end{document} are synthesized by low-temperature solution condensation of 1,1′-di(chlorocarbonyl) ferrocene with hydrazine or 1, 1′-ferrocenedicarboxyhydrazide and hexamethylphosphoramide as solvent. In an analogous manner the polycondensation of 1, 1′-di(chlorocarbonyl)ferrocene with oxalyldihydrazide leads to polyhydrazides essentially possessing the structure \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm C}_{10} {\rm H}_8 {\rm Fe}\hbox{---}{\rm CONHNHCO}\hbox{---}{\rm CONHNHCO}\rlap{--}]_n $\end{document}. Both polymer types exhibit inherent viscosities (0.08–0.19 dl./g.) considerably lower than reported for analogous aliphatic or benzene-aromatic polyhydrazides. This behavior points to premature chain termination via heterobridging imide groups as a result of the welldocumented tendency of appropriately substituted ferrocene compounds to undergo intramolecular cyclization. In addition, elemental analytical and spectroscopic evidence, coupled with the failure of both polymer types to undergo cyclodehydration to the corresponding 1,3,4-oxadiazole polymers upon heat treatment, suggests some structural irregularities in the aliphatic connecting segments arising from ferrocenoylation of secondary amino groups with resultant branching. With the polyhydrazide prepared from 1, 1′-di(chlorocarbonyl)ferrocene and 1, 1′-ferrocenedicarboxyhydrazide it is shown spectroscopically that treatment with alkali results in conversation of the nonconjugated hydrazide structure of the connecting segments into the polyconjugated tautomeric enol form comprising azine groups.  相似文献   

10.
Five new monomers of transition metal complexes containing a styryl group, trans-\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Pd}({\rm PBu}_{\rm 3})_2 \rlap{--} ({\rm C}_6 {\rm H}_4 {\rm CH} \hbox{=\hskip-2pt=} {\rm CH}_2 ){\rm X\ X \hbox{=\hskip-2pt=} Cl(Ia),\ X \hbox{=\hskip-2pt=} Br(Ib)},\ {\rm X \hbox{=\hskip-2pt=} CN(Ic),\ X \hbox{=\hskip-2pt=} Ph(Id)} $\end{document} and trans-\documentclass{article}\pagestyle{empty}\begin{document}${\rm Pt(PBu}_{\rm 3} {\rm )}_{\rm 2} \rlap{--} ({\rm C}_{\rm 6} {\rm H}_{\rm 4} {\rm CH} \hbox{=\hskip-2pt=} {\rm CH}_2 ){\rm Cl}({\rm II})$\end{document}, were synthesized. The monomers were readily homopolymerized in benzene with the use of AIBN or BBu3–oxygen as the initiator. Copolymerization of Ia with styrene was carried out by using AIBN. From the Cl content of the copolymers by analysis, monomer reactivity ratios and Qe values were obtained as follows: r1 = 1.49, r2 = 0.45; Q2 = 0.41, e2 = ?1.4 (M1 = styrene, M2 = Ia). Based on the above data, the σ-bonded palladium moiety at para position of styrene acts as a strongly electron-donating group to the phenyl ring. This is also supported by the olefinic β-carbon chemical shift of 13C NMR for Ia.  相似文献   

11.
Electron capture by and the subsequent fragmentation of a series of eleven fluorinated β-diketones of general formula CF3COCH2COR has been studied in an MS-50 mass spectrometer. Consecutive loss of two HF molecules from molecular anions occurs with all compounds, as does elimination of CHF3 from [M ? H]? ions. Elimination of CO occurs from either \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm M - HF}} \right]_{}^{_.^ - } $\end{document} or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm M - 2HF}} \right]_{}^{_.^ - } $\end{document} ions for five compounds where R ? CF3 or a cyclic substituent. Kinetic energy release in metastable transitions associated with these HF and CO eliminations has been measured. Intensities of various fragment ions are in part influenced by the ion source temperature. Interaction of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm O}} \right]_{}^{_.^ - } $\end{document} reagent ions with five of the β-diketones under chemical ionization conditions gave [M ? H]? ions as the only significant ion-molecule reaction product.  相似文献   

12.
A comparative study of the average molecular optical anisotropy 〈γ2〉 of the polyoxyethylene chain, \documentclass{article}\pagestyle{empty}\begin{document}${\rm R} \hbox{---} {\rm O}\rlap{--} ({\rm CH}_2 {\rm CH}_2 {\rm O}\rlap{--} )_n {\rm R}$\end{document} where R = CH3, H and n is the degree of polymerization of the molecule, was carried out for the different internal rotational models considered in Part I of this series. In particular, the results obtained show that the condition of interdependence between internal rotational angles of nearest-neighboring bonds increases the average molecular optical anisotropy by about 4% (n ? 1), compared with the case of independent rotations. This increase is much weaker than in polyethylene chains, for which it is about 20% under analogous conditions.  相似文献   

13.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

14.
Mechanochemical reaction of cluster coordination polymers (Q=S, Se) with solid leads to the cluster core excision with the formation of anionic complexes . Extraction of the reaction mixture with water followed by crystallization gives crystalline (main product) and (1) (minor product). In the case of the Se cluster, the complex could not be isolated, and the treatment of the aqueous extract with PPh3 gave (2) in a low yield. Alternatively, it was obtained from and in high yield. Both 1 and 2 were characterized by X-ray structure analysis. Dedicated to Academician I. I. Moiseev on the occasion of his 75th birthday and in recognition of his outstanding contribution to cluster chemistry.  相似文献   

15.
An extremely efficient process has been developed for the synthesis of linear silylene-acetylene and disilylene-acetylene polymers. Trichloroethylene is quantitatively converted by n-butyllithium to dilithioacetylene. Quenching with dialkyl-or diaryldichlorosilanes affords high yields of the polymers, $ \rlap{--} [{\rm SiR}_{\rm 2} \hbox{---} {\rm C} \equiv {\rm C\rlap{--} ]}_n ,{\rm and }\rlap{--} [{\rm SiMe}_{\rm 2} {\rm SiMe}_{\rm 2} - {\rm C} \equiv {\rm C\rlap{--} ]}_n $ if ClMe2SiSiMe2Cl is employed. Molecular weights are much higher with this route than when acetylene is used as the dilithio- or dimagnesium acetylide precursor. Some of these polymers can be pulled into continuous fibers, and all can be cast into coherent films and thermally converted into silicon carbide.  相似文献   

16.
This article reports the use of simple conductivity measurements to explore the state of small counter-ions (mostly NH 4 + and Na+) in $[\hbox{As}^{\rm III}_{12}\hbox{Ce}^{\rm III}_{16}(\hbox{H}_2\hbox{O})_{36}\hbox{W}_{148}\hbox{O}_{524}]^{76-} (\{\hbox{W}_{148}\})$ and $[\hbox{Mo}_{132}\hbox{O}_{372}(\hbox{CH}_{3}\hbox{COO})_{30} (\hbox{H}_{2}\hbox{O})_{72}]^{42-} (\{\hbox{Mo}_{132}\})$ macroanionic solutions. All the solutions are dialyzed to remove the extra electrolytes. Conductivity measurements on {(NH4)70Na6W148} and {(NH4)42Mo132} solutions at different concentrations both before and after dialysis indicate that the state of counter-ions has obvious concentration dependence. The “counter-ion association” phenomenon, that is, some small counter-ions closely associate with macroanions and move together, has been observed in both types of macroionic solutions above certain concentration. The association of counter-ions in hydrophilic macroionic solutions provides support on our previous speculation that the counter-ions might be responsible for the unique self-assembly of such macroanions into single-layer blackberry-type structures.  相似文献   

17.
Quantitative structure-property relationship for the thermal decomposition of polymers is suggested. The data on architecture of monomers is used to represent polymers. The structures of monomers are represented by simplified molecular input-line entry system. The average statistical quality of the suggested quantitative structure-property relationships for prediction of molar thermal decomposition function $\hbox {Y}_{\mathrm{d},1/2}$ is the following: $\hbox {r}^{2}=0.970 \pm 0.01$ and $\hbox {RMSE}=4.71\pm 1.01\,(\hbox {K}\times \hbox {kg}\times \hbox {mol}^{-1})$ .  相似文献   

18.
The ionic thermoconductivity (ITC) method has been used to study the α′ transition in the polyamide \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \hbox{--}\rlap{--} [NH(CH}_{\rm 2} )_6 {\rm NH}\hbox{---} \rm CO(CH_2 )_4 {\rm CO\hbox{--}\rlap{--} ]}_{{\rm x}} $\end{document} (nylon 66). Depending on the thermal history of the sample, the maximum of the thermocurrent peak attributed to the α′ relaxation is found somewhere between ca. 45°C and ca. 66°C; on one heating, it shifts to higher temperatures. The high sensitivity and resolving power of the ITC method permit resolution of this peak into four elementary “pure” activated processes, with constant activation energies in the relevant temperature range. Each of the four corresponding relaxation times follows an Arrhenius law, with a well-defined characteristic temperature T0 = 83°C at which all these relaxation times are equal. When this last result is interpreted in the light of Eyring's or Bauer's theory, it gives a linear relation between “apparent” activation entropy and activation enthalpy of the elementary processes. The characteristic temperature T0 is independent of the thermal history of the sample, and the temperature shift of the thermocurrent maximum can be interpreted by the observed variation of the relative intensities of the elementary processes, without modification of their other characteristic features.  相似文献   

19.
Linear polyacroleins prepared by anionic polymerization give the structural repeat units of the types \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--}[{\rm CH}\left( {{\rm CHO}} \right)\hbox{--} {\rm CH}_{\rm 2} {\rm \rlap{--} ], \rlap{--} [CH}_{\rm 2} \hbox{--} {\rm CH}\left( {{\rm CHO}} \right)\rlap{--} ], $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}\left( {{\rm CH}\hbox {\rm CH}_2 } \right)\hbox{\rm O\rlap{--} ]} $\end{document} without any cyclization. Analysis of these polymers by several methods reveal the nature and amount of each structural species, and an estimation of their distribution along the polymeric chain.  相似文献   

20.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号