首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-Ray and Vibrational Studies of Sulvanite Mixed Cystals Cu3Nb(SxSe1?x)4, Cu3Nb(SexTe1?x)4, Cu3Ta(SxSe1?x)4 and Cu3Ta(SexTe1?x)4 Solid solutions Cu3Nb(SxSe1?x)4, Cu3Nb(SexTe1?x)4, Cu3Ta(SxSe1?x)4 and Cu3Ta(SexTe1?x)4 with sulvanite structure have been prepared in the range 0 ≤ x ≤ 1. The lattice constants in all systems obey the Vegard rule. Infrared and Raman spectra have been measured. The spectra of the compounds with mixed anion sublattices show additional peaks, compared to those of the end members, because besides the polyhedra MX4 and MY4 also groups MX3Y, MX2Y2, and MXY3 are present, and all groups are able to oscillate independently. By comparison of the peak intensities and the statistical frequency of the groups according to the composition, the additional valence vibrations could be attributed to the groups.  相似文献   

2.
Transition-metal trisulfides, TiS3, NbS3, and TaS3, with a quasi-one-dimensional structure are investigated by X-ray photoelectron spectroscopic (XPS) measurements to obtain information on the valence band structures. The band structures at the Fermi level of these compounds correspond well to their transport properties. A shoulder is observed at the top of the valence band in NbS3 and TaS3, suggesting that this band is made up of the metal dz2 electrons. The dz2 band is occupied in NbS3 and TaS2 and empty in TiS3. The characteristic features at the top of the valence band in NbS3 imply the occurrence of dz2 band separation, which leads to a semiconducting nature.  相似文献   

3.
The crystal structure of copper(I) lanthanum selenide, La3Cu4.88Se7, obtained from the La2Se3–Cu2Se quasi‐binary system, has been investigated using X‐ray single‐crystal diffraction. The positions of the La and Se atoms are ordered and lie on mirror planes, whereas all positions for the Cu atoms are partially occupied. The crystal is built from edge‐sharing [LaSe6] and [LaSe7] polyhedra. The five positions for the Cu atoms determine an ionic diffusion pathway in the structure.  相似文献   

4.
The undecanuclear copper cluster Cu11(μ9‐Se)(μ3‐I)3[Se2P(OEt)2]6 1 , has been isolated along with Cu88‐Se)[Se2P(OEt)2]6 2 , from the reaction of NH4Se2P(OEt)2, Cu(CH3CN)4PF6, and Bu4NI in a molar ratio of 3:2:2 in diethyl ether. The molecular formulation of 1 was confirmed by elemental analysis, positive FAB mass spectrometry, multinuclear NMR (1H, 31P, and 77Se), and X‐ray diffraction. In cluster 1 eleven copper atoms adopt the geometry of a 3,3,4,4,4‐pentacapped trigonal prism with a selenium atom in the center. The coordination geometry for the central, nonacoordinated selenium atom is tricapped trigonal prismatic. In addition, the central core Cu11Se is further stabilized by three iodides and six dsep ligands. Besides, weak inter‐molecular Se···I interactions (3.949–3.972 Å) are uncovered and form a one dimensional polymeric chain.  相似文献   

5.
This work describes solid-state reactions for the formation of the chalcopyrite compounds CuInSe2, CuGaSe2 and Cu(In,Ga)Se2 on atomic scale. The most important chalcopyrite formation reactions which were identified by the authors by real-time in situ X-ray diffraction in preceding experiments are (A) CuSe+InSe→CuInSe2, (B) Cu2Se+2 InSe+Se→2 CuInSe2 and (C) Cu2Se+In2Se3→2 CuInSe2. During the selenistaion of a metallic precursor containing gallium a separate fourth reaction occurs: (D) Cu2Se+Ga2Se3→2 CuGaSe2. The quaternary compound is finally formed by interdiffusion of CuInSe2 with CuGaSe2 (E). These five reactions differ in their activation energy and reaction speed. We explain these differences qualitatively by analysing the involved crystal structures for each reaction. It turns out that all reactions involved in the formation of Cu(In,Ga)Se2 are promoted by epitaxial relations, which facilitates the formation of polycrystalline thin films at temperatures much below those necessary for single crystal growth. Recommendations for the growth of larger grains of Cu(In,Ga)Se2 containing fewer defects are given.  相似文献   

6.
Transition metal trichalcogenides TaSe3, TaS3, NbSe3 and NbS3 were prepared under the reaction conditions of 2 GPa, 700°C, 30 min. NbSe3 is exactly the same as that obtained in the usual sealed-tube method. The other products are modifications of each usual phase. They have crystal structures very similar to that of NbSe3. The lattice parameters are a = 10.02Å, b = 3.48 Å, c = 15.56 Å, β = 109.6° for TaSe3, a = 9.52 Å, b = 3.35 Å, c = 14.92 Å, β = 110.0° for TaS3, and a = 9.68 Å, b = 3.37 Å, c = 14.83 Å, β = 109.9° for NbS3. In spite of the similarity in their crystal structures, these high-pressure phases show a variety of electrical transport properties. TaSe3 is a superconductor having Tc at 1.9 K. TaS3 is a semiconductor with two transitions at 200 and 250 K. NbS3 is a semiconductor with Ea = 180 MeV.  相似文献   

7.
Rational designing and constructing multiphase hybrid electrode materials is an effective method to compensate for the performance defects of the single component. Based on this strategy, Cu2Se hexagonal nanosheets@Co3Se4 nanospheres mixed structures have been fabricated by a facile two-step hydrothermal method. Under the synergistic effect of the high ionic conductivity of Cu2Se and the remarkable cycling stability of Co3Se4, Cu2Se@Co3Se4 can exhibit outstanding electrochemical performance as a novel electrode material. The as-prepared Cu2Se@Co3Se4 electrode displays high specific capacitance of 1005 F g−1 at 1 A g−1 with enhanced rate capability (56 % capacitance retention at 10 A g−1), and ultralong lifespan (94.2 % after 10 000 cycles at 20 A g−1). An asymmetric supercapacitor is assembled applying the Cu2Se@Co3Se4 as anode and graphene as cathode, which delivers a wide work potential window of 1.6 V, high energy density (30.9 Wh kg−1 at 0.74 kW kg−1), high power density (21.0 Wh kg−1 at 7.50 kW kg−1), and excellent cycling stability (85.8 % after 10 000 cycles at 10 A g−1).  相似文献   

8.
A previously unknown modification of dicopper(I) triselenostannate(IV), Cu2Se3Sn, has been obtained from the Cu2Se–SnSe2 quasi‐binary system and investigated using X‐ray single‐crystal diffraction. The Se atoms are stacked in a closest‐packed arrangement with the layers in the sequence ABC. The Cu atoms occupy one‐third of the tetrahedral interstices, whereas the Sn atoms are located in one‐sixth of the tetrahedral interstices. All the atoms occupy general positions. The structure possesses pseudo‐inversion symmetry. The Cu2Se3Sn structure investigated in this paper (96 atoms per unit cell, ordered distribution of Cu and Sn over 12 cation positions) is a superstructure of the reported cubic (eight atoms per unit cell, random distribution of Cu and Sn over one cation position) and monoclinic (24 atoms per unit cell, ordered distribution of Cu and Sn over three cation positions) modifications.  相似文献   

9.
The title centrosymmetric CuII binuclear complex, bis(μ‐N,N‐diethyl‐1,1‐di­seleno­carbamato‐Se,Se′:Se)­bis­[(N,N‐diethyl‐1,1‐di­seleno­carbamato‐Se,Se′)copper(II)], [Cu(Se2CNEt2)2]2 or [Cu2(C5H10NSe2)4], is built from two symmetry‐related [Cu{Se2CN(Et)2}2] units by pairs of Cu—Se bonds. The coordination geometry at the unique Cu atom is distorted square pyramidal, with Cu—Se distances in the range 2.4091 (11)—2.9095 (10) Å.  相似文献   

10.
The Rare Earth Metal Polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x – Increasing Disorder in Defective Planar Selenium Layers Single crystals of the rare earth metal polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x (0 < x ≤ 0.3) have been prepared by chemical transport reactions (1120 K→ 970 K, 14 days, I2 as carrier) starting from pre‐annealed powders of nominal compositions between LnSe2 and LnSe1.9. The isostructural title compounds adopt a 3 × 4 × 2 superstructure of the ZrSSi type and can be described in space group Amm2 with lattice parameters of a = 12.161(1) Å, b = 16.212(2) Å and c = 16.631(2) Å (Gd8Se15), a = 12.094(2) Å, b = 16.123(2) Å and c = 16.550(2) Å (Tb8Se15?x), a = 12.036(2) Å, b = 16.060(2) Å and c = 16.475(2) Å (Dy8Se15?x), a = 11.993(2) Å, b = 15.999(2) Å and c = 16.471(2) Å (Ho8Se15?x), a = 11.908(2) Å, b = 15.921(2) Å and c = 16.428(2) Å (Er8Se15?x), and a = 12.045(2) Å, b = 16.072(3) Å and c = 16.626(3) Å (Y8Se15?x), respectively. The structure consists of puckered [LnSe] double slabs and planar Se layers alternating along [001]. The planar Se layers contain a disordered arrangement of dimers, Se2? and vacancies. All compounds are semiconducting and contain trivalent rare earth metals (Ln3+).  相似文献   

11.
The first colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4, a promising new material for photovoltaics, is reported. Because the formation of binary copper selenide impurities seemed to form more readily, two approaches were developed to install phosphorus bonds directly: 1) the synthesis of molecular P4Se3 and subsequent reaction with a copper precursor, (P‐Se)+Cu, and 2) the synthesis of copper phosphide, Cu3P, nanoparticles and subsequent reaction with a selenium precursor, (Cu‐P)+Se. The isolation and purification of Cu3P nanoparticles and subsequent selenization yielded phase‐pure Cu3PSe4. Solvent effects and Se precursor reactivities were elucidated and were key to understanding the final reaction conditions.  相似文献   

12.
The phase diagram Cu2SeAs2Se3 was investigated by thermal and X-ray methods. Cu2Se has a limited solubility for As2Se3 (5 mole% at 769 K). The stoichiometric compound Cu3AsSe3 exists between 696 and 769 K. Cu4As2Se5, a phase at 66.6 mole% Cu2Se, decomposes peritectically at 746 K. The narrow homogeneity range (4 mole% at 683 K) extends far into the ternary space. CuAsSe2 also decomposes peritectically at 683 K. A degenerated eutectic between CuAsSe2 and As2Se3 was found at 641 K. Single crystals of Cu4As2Se5 were grown in a salt melt. A metastable modification of the high-temperature phase Cu3AsSe3 can be obtained by quenching. Cu4As2Se5 (space group R3, lattice constants a = 1404.0(1) pm, c = 960.2(1) pm), Cu6As4Se9, obtained by Cambi and Elli, and Cu7As6Se13 of Takeuchi and Horiuchi are different versions of a sphalerite-type compound with a broad homogeneity range in the system CuAsSe. CuAsSe2 is possibly monoclinic with lattice parameters of a = 946.5(1) pm, b = 1229.3(1) pm, c = 511.7(1) pm, and β = 98.546(4)°. The enthalpy of mixing of Cu2Se and As2Se3 in the liquid state is endothermic.  相似文献   

13.
Syntheses and Crystal Structures of new Selenido‐ and Selenolato‐bridged Copper Clusters: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4), and [Cu3(SeMes)3(dppm)] (5) The reactions of copper(I) chloride or copper(I) acetate with monodentate phosphine ligands (PR3; R = organic group) and Se(SiMe3)2 have already lead to the formation of CuSe clusters with up to 146 copper and 73 selenium atoms. If the starting materials and the bidentate phosphine ligands (Ph2P–(CH2)n–PPh2, n = 1: dppm, n = 3: dppp, n = 4: dppb; Ph2P–C≡C–PPh2: dppa) and silylated chalcogen derivates are changed (RSeSiMe3; R = Ph, Mes) a series of new CuSe clusters can be synthesized. From single crystal X‐ray structure analysis one can characterise [Cu38Se13(SePh)12(dppb)6] ( 1 ), [Cu(dppp)2] · [Cu25Se4(SePh)18(dppp)2] ( 2 ), [Cu36Se5(SePh)26(dppa)4] ( 3 ), [Cu58Se16(SePh)24(dppa)6] ( 4 ) and [Cu3(SeMes)3(dppm)] ( 5 ). In this new class of CuSe clusters, compounds 1 and 4 possess a spherical cluster skeleton, wheras 2 and 3 have a layered cluster core.  相似文献   

14.
The interaction along the Cu2GeSe3-Cr2Se3 join has been investigated using differential thermal and X-ray powder diffraction analyses. It has been found that the join is quasi-binary with a degenerate eutectic based on the Cu2GeSe3 compound. Two new quaternary compounds have been found along the join, namely, Cu2GeCr6Se12 and the γ phase. The phase is formed at 915°C by the peritectic reaction L + β-Cr2Se3 = γ and has the primary crystallization region up to 9 mol % Cr2Se3 in the temperature range 758–915°C. The room-temperature homogeneity range of the γ phase is 65–70 mol % Cr2Se3. The Cu2GeCr6Se12 compound is formed by the peritectoid reaction γ + β-Cr2Se3=Cu2GeCr6Se12 at 880°C, and its homogeneity range is 73–79 mol %. The X-ray reflections of the γ phase are indexed for the tetragonal crystal system with the unit cell parameters a = 12.043 Å and c = 9.180 Å. Samples with ferromagnetic properties are found in the homogeneity regions of both compounds.  相似文献   

15.
Chalcogenoniobates as Reagents for the Synthesis of New Heterobimetallic Niobium Coinage Metal Chalcogenide Clusters In the presence of phosphine chalcogenoniobates such as Li3[NbS4] · 4 CH3CN ( I ), (NEt4)4[Nb6S17] · 3 CH3CN ( II ) and (NEt4)2[NbE′3(EtBu)] ( III a : E′ = E = S; III b : E = Se, E′ = S; III c : E = E′ = Se) respectively react with copper and gold salts to give a number of new heterobimetallic niobium copper(gold) chalcogenide clusters. These clusters show metal chalcogenide units already known from the complex chemistry of the tetrachalcogenometalates [ME4]n (M = V, n = 3, E = S; M = Mo, W, n = 2, E = S, Se). The compounds 1 – 8 owe a central tetrahedral [NbE4] structural unit, which coordinates η2 from two to five coinage metal atoms, employing the chalcogenide atoms of the [NbE4] edges. The compounds 9 – 11 have a [M′2Nb2E4] (M′ = Cu, Au) heterocubane unit in common, involving a metal metal bond between the niobium atoms, while the compounds 12 and 13 show a complete and 14 an incomplete [M′3NbE3X] heterocubane structure (X = Cl, Br). 15 consists of a Cu6Nb2 cube with the six planes capped by μ4 bridging selenide ligands forming an octahedra. The compounds 1 – 15 are listed below: (NEt4) [Cu2NbSe2S2(dppe)2] · 2 DMF ( 1 ), [Cu3NbS4(PPh3)4] ( 2 ), [Au3NbSe4(PPh3)4] · Et2O ( 3 ), [Cu4NbS4Cl(PCy3)4] ( 4 ), [Cu4NbS4Cl(PtBu3)4] · 0,5 DMF ( 5 ), [Cu4NbSe4(NCS)(PtBu3)4] · DMF ( 6 ), [Cu4NbS4(NCS)(dppm)4] · Et2O ( 7 ), [Cu5NbSe4Cl2‐ (dppm)4] · 3 DMF ( 8 ), [Cu2Nb2S4Cl2(PMe3)6] · DMF ( 9 ), [Au2Nb2Se4Cl2(PMe3)6] · DMF ( 10 ), (NEt4)2[Cu3Nb2S4(NCS)5(dppm)2(dmf)] · 4 DMF ( 11 ), [Cu3NbS3Br(PPh3)3(dmf)3]Br · [CuBr(PPh3)3] · PPh3 · OPPh3 · 3 DMF ( 12 ), [Cu3NbS3Cl2(PPh3)3(dmf)2] · 1.5 DMF ( 13 ), (NEt4)[Cu3NbSe3Cl3(dmf)3] ( 14 ), [Cu6Nb2Se6O2(PMe3)6] ( 15 ). The structures of these compounds were obtained by X‐ray single crystal structure analysis.  相似文献   

16.
Single crystal and powder samples of the system TaS2?xSex have been prepared and studied. The range of solubility was found to extend from x = 0 to x = 2.0. X-Ray analysis has shown that mixed anion samples exhibit a series of hexagonal layered polymorphs similar to those found in TaS2 and TaSe2, with the a and c lattice parameters increasing monotonically from TaS2 to TaSe2. Electrical transport properties were measured on single crystals and found to be similar to the end compositions. Organic molecules such as pyridine and collidine were found to intercalate TaS2?xSex for x ≦ 1.4, and superconducting transition temperatures were measured for both intercalated and unintercalated samples. The highest Tc obtained was 4.1 K in the 4H(c) phase of the sample TaS1.6Se0.4.  相似文献   

17.
Control over phase stabilities during synthesis processes is of great importance for both fundamental studies and practical applications. We describe herein a facile strategy for the synthesis of Cu2Se with phase selectivity through a simple solvothermal method. In the presence and absence of SbCl3, monoclinic α‐Cu2Se and cubic β‐Cu2Se can be synthesized, respectively. The formation of α‐Cu2Se requires optimization of the Cu/Se molar ratio in the starting reagents, the reaction temperature, as well as the timing for the addition of SbCl3. Differential scanning calorimetry of the synthesized α‐Cu2Se has shown that a part of it undergoes a phase transition to β‐Cu2Se at 135 °C, and that this phase transition is irreversible on cooling to ambient temperature. Kinetic studies have revealed that in the presence of Sb species the kinetically favored β‐Cu2Se transforms to the thermodynamically favored α‐Cu2Se. In this β‐to‐α phase transition process, the distribution of Cu ions in β‐Cu2Se, as determined by the Cu/Se ratio and temperature, is likely to play a crucial role.  相似文献   

18.
Spinels with substituted Nonmetal Sublattices. IV. CuCr2(S1?xSex)4 and CuCr2(Se1?xTex)4 Polycrystalline samples of the spinel system CuCr2(S1?xSex)4 have been prepared with 0 ≤ x ≤ 1. We found that in the spinel system CuCr2(Se1?xTex)4 no solid solution is existent in the range 0.01 ≤ x ≤ 0.70. When S is substituted by Se and Se by Te the lattice constants increase linearely by 0.52 Å and 0.81 Å respectively. The anion-sublattice shows random distribution of the chalcogen atoms, the chalcogen parameters u are constant in the system CuCr2(S1?xSex)4 with a mean value of u = 0.3829. The calculated anion-cation-distances lead to a covalent tetrahedral radius rCu = 1.23 Å. This radius is in agreement with the radius rCu = 1.22 Å of Cu spinels with Cu in the valence +1.  相似文献   

19.
Some earlier synthesized copper selenide (Cu x Se) layers formed on the surface of polyamide 6 by sorption-diffusion method using potassium selenotrithionate (K2SeS2O6) as precursor of selenium were characterized by the XRD, XPS and SEM methods. According to the results of the SEM studies, the most uniform Cu x Se layers form at the 2.5 h polyamide seleniumized duration at the temperature of 60°C. The thickness of layers, which dependeds on the duration of seleniumization, changed in the range of 0.8–3.2 µm. The XRD patterns of not previously studied Cu x Se layers showed their phase composition of six copper selenides: Cu2Se, two phases of CuSe2, Cu3Se2, berzellianite, Cu2-x Se, and bellidoite Cu2Se. Analysis of the XRD and XPS data shows that the macrostructure and composition of the CuxSe layers depend on the conditions of formation of these layers.   相似文献   

20.
Cyclic Polyselenidoarsenates(III) and Polyselenidoantimonates(III): PPh4[Se5AsSe], PPh4[AsSe6–xS x ], (PPh4)2[As2Se6] · 2 CH3CN, and (PPh4)2[Se6SbSe]2 In acetonitrile, AsCl3 and sodiumphenolate formed Cl2AsOPh which then was reacted with PPh4Se5 and finally with Na2Se to yield PPh4[Se5AsSe]. With Na2S instead of Na2Se, PPh4[AsSe6–xSx] was obtained; the sulfur contents increased with increasing reaction temperature and time (x = 0.21 to 1.09). With PPh4Se2 instead of PPh4Se5, (PPh4)2[1,4-As2Se6] · 2 CH3CN and PPh4[Se5AsSe] were the products. With SbCl3 instead of AsCl3, (PPh4)2[Se6SbSe]2 formed. PPh4[Se5AsSe] can also be produced from As2Se3, PPh4Br, Na2Se and selenium in acetonitrile. The crystal structure of PPh4[SeAsSe5] is isotypic with PPh4[S5AsS] (X-ray structure analysis with 2414 observed reflexions, R = 0.038). The Se5AsSe ion consists of a six-membered AsSe5 ring in chair conformation, and the As atom has an additional terminal Se atom. The compounds PPh4[AsSe6–xSx] have the same crystal structures, with sulfur atoms taking all selenium positions at random, but with a preference for the terminal position. The anion in (PPh4)2[As2Se6] · 2 CH3CN also has a six-membered ring structure in chair conformation, with two arsenic atoms in positions 1 and 4. The centrosymmetric anion in (PPh4)2[Se6SbSe]2 consists of a central Sb2Se2 ring, and a Se6 ligand is bonded in a chelating manner to each Sb atom (X-ray structure analysis with 2669 observed reflexions, R = 0.099). 77Se-NMR spectra are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号