首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title salts, 4‐chloroanilinium hydrogen phthalate (PCAHP), C6H7ClN+·C8H5O4, 2‐hydroxyanilinium hydrogen phthalate (2HAHP), C6H8NO+·C8H5O4, and 3‐hydroxyanilinium hydrogen phthalate (3HAHP), C6H8NO+·C8H5O4, all crystallize in the space group P21/c. The asymmetric unit of 2HAHP contains two independent ion pairs. The hydrogen phthalate ions of 2HAHP and 3HAHP show a short intramolecular O—H...O hydrogen bond, with O...O distances ranging from 2.3832 (15) to 2.3860 (14) Å. N—H...O and O—H...O hydrogen bonds, together with short C—H...O contacts in PCAHP and 3HAHP, generate extended hydrogen‐bond networks. PCAHP forms a two‐dimensional supramolecular sheet extending in the (100) plane, whereas 2HAHP has a supramolecular chain running parallel to the [100] direction and 3HAHP has a two‐dimensional network extending parallel to the (001) plane.  相似文献   

2.
A class of extended 2,5‐disubstituted‐1,3,4‐oxadiazoles R1‐C6H4‐{OC2N2}‐C6H4‐R2 (R1=R2=C10H21O 1 a , p‐C10H21O‐C6H4‐C?C 3 a , p‐CH3O‐C6H4‐C?C 3 b ; R1=C10H21O, R2=CH3O 1 b , (CH3)2N 1 c ; F 1 d ; R1=C10H21O‐C6H4‐C?C, R2=C10H21O 2 a , CH3O 2 b , (CH3)2N 2 c , F 2 d ) were prepared, and their liquid‐crystalline properties were examined. In CH2Cl2 solution, these compounds displayed a room‐temperature emission with λmax at 340471 nm and quantum yields of 0.730.97. Compounds 1 d , 2 a – 2 d , and 3 a exhibited various thermotropic mesophases (monotropic, enantiotropic nematic/smectic), which were examined by polarized‐light optical microscopy and differential scanning calorimetry. Structure determination by a direct‐space approach using simulated annealing or parallel tempering of the powder X‐ray diffraction data revealed distinctive crystal‐packing arrangements for mesogenic molecules 2 b and 3 a , leading to different nematic mesophase behavior, with 2 b being monotropic and 3 a enantiotropic in the narrow temperature range of 200210 °C. The structural transitions associated with these crystalline solids and their mesophases were studied by variable‐temperature X‐ray diffractometry. Nondestructive phase transitions (crystal‐to‐crystal, crystal‐to‐mesophase, mesophase‐to‐liquid) were observed in the diffractograms of 1 b, 1 d , 2 b, 2 d , and 3 a measured at 25200 °C. Powder X‐ray diffraction and small‐angle X‐ray scattering data revealed that the structure of the annealed solid residue 2 b reverted to its original crystal/molecular packing when the isotropic liquid was cooled to room temperature. Structure–property relationships within these mesomorphic solids are discussed in the context of their molecular structures and intermolecular interactions.  相似文献   

3.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

4.
The analysis of the crystal structures of rac‐3‐benzoyl‐2‐methylpropionic acid, C11H12O3, (I), morpholinium rac‐3‐benzoyl‐2‐methylpropionate monohydrate, C4H10NO+·C11H11O3·H2O, (II), pyridinium [hydrogen bis(rac‐3‐benzoyl‐2‐methylpropionate)], C5H6N+·(H+·2C11H11O3), (III), and pyrrolidinium rac‐3‐benzoyl‐2‐methylpropionate rac‐3‐benzoyl‐2‐methylpropionic acid, C4H10N+·C11H11O3·C11H12O3, (IV), has enabled us to predict and understand the behaviour of these compounds in Yang photocyclization. Molecules containing the Ar—CO—C—C—CH fragment can undergo Yang photocyclization in solvents but they can be photoinert in the crystalline state. In the case of the compounds studied here, the long distances between the O atom of the carbonyl group and the γ‐H atom, and between the C atom of the carbonyl group and the γ‐C atom preclude Yang photocyclization in the crystals. Molecules of (I) are deprotonated in a different manner depending on the kind of organic base used. In the crystal structure of (III), strong centrosymmetric O...H...O hydrogen bonds are observed.  相似文献   

5.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

6.
In the title compound, [K(C4H8O)][ZrCl2(C12H8N)3(C4H8O)], the Zr atom is pseudo‐octahedral, with two Cl ligands in trans positions. There is extensive interaction between the potassium cation and two of the aromatic carbazolyl ligands in η6 [C⃛K = 3.167 (3)–3.331 (3) Å] and η2 [C⃛K = 3.147 (3)–3.268 (2) Å] fashions.  相似文献   

7.
Single and Double Deprotonated Maleic Acid in Praseodymium Hydrogenmaleate Octahydrate, Pr(C4O4H3)3 · 8 H2O, and Praseodymiummaleatechloride Tetrahydrate, Pr(C4O4H2)Cl · 4 H2O Single crystals of Pr(C4O4H3)3 · 8 H2O grew by slow evaporation of a solution which had been obtained by dissolving Pr(OH)3 in aqueous maleic acid. The triclinic compound (P1, Z = 2, a = 728.63(3), b = 1040.23(3), c = 1676.05(8) pm, α = 72.108(2)°, β = 87.774(2)°, γ = 70.851(2)°, Rall = 0.0261) contains Pr3+ ions in ninefold coordination of oxygen atoms which belong to two monodentate maleate ions and seven H2O molecules. There is one further non‐coordinating maleate ion and one crystal water molecule in the unit cell. Thermal treatment of Pr(C4O4H3)3 · 8 H2O leads first to the anhydrous compound which then decomposes to the respective oxide in two steps upon further heating. Evaporation of a solution of Pr(C4O4H3)3 · 8 H2O which contained additional Cl ions yielded single crystals of Pr(C4O4H2)Cl · 4 H2O. In the crystal structure (monoclinic, P21/c, Z = 4, a = 866.0(1), b = 1344.3(1), c = 896.9(1) pm, β = 94.48(2)°, Rall = 0.0227), the Pr3+ ions are surrounded by nine oxygen atoms. The latter belong to four H2O molecules and three maleate ions. Two of the latter act as bidentate ligands.  相似文献   

8.
The binuclear cation of the title compound, [Ni2(C33H29­N4O3)(H2O)4]C2H3O2·C3H7NO·0.75H2O, was synthesized as a model for the active site of urease. Two tridentate halves of the symmetrical 2,6‐bis{[(2‐hydroxy­phenyl)(2‐pyridyl­methyl)­amino]­methyl}‐4‐methyl­phenolate (BPPMP3?) ligand are arranged in a meridional fashion around the two NiII ions, with the phenoxo O atom bridging the NiII ions. The cation has an approximate twofold rotation axis running through the C—O bond of the bridging phenolate group. Four water mol­ecules complete the octahedral environment of each NiII ion.  相似文献   

9.
On Chalcogenolates. 83. Studies on Hemiesters of Trithocarbonic ACld. 1. Preparation and Properties of Thoxanthates Thioxanthates of alkli metals K[S2C? SR] · H2O with R = CH3, C2H5, nC3H7, iC3H7, sC4H9, tC4H9 M[S2C? S-nC4H9] · H2O with M = Na, K, Rb, Cs have been prepared by reaction of alkanethiols with OS2 and the corresponding hydroxide. The i.r. spectra, electron absorption spectra, and 1H-n.m.r. spectra have been assigned.  相似文献   

10.
The structures of the title compounds, [Ho(C5H7O2)3(H2O)2]·H2O and [Ho(C5H7O2)3(H2O)2]·C5H8O2·2H2O, both show an eight‐coordinate holmium(III) ion in a square antiprismatic configuration. The packing of these structures consists of an infinite two‐dimensional network of hydrogen‐bonded mol­ecules. In both structures, the same hydrogen‐bonded chain of HoIII complexes is found.  相似文献   

11.
Hydrazinium saccharinate, N2H5+·C7H4NO3S, crystallizes in a 1:1 ratio, while ethyl­ene­diaminium bis­(saccharinate), C2H10N22+·2C7H4NO3S, and butane‐1,4‐diaminium bis­(sac­charin­ate), C4H14N22+·2C7H4NO3S, form in a 1:2 cation–anion stoichiometry. The structures contain many strong hydrogen bonds of the N+—H⋯N, N+—H⋯O, N—H⋯O and N—H⋯N types, with auxiliary C—H⋯O inter­actions.  相似文献   

12.
The crystal structure of N‐[(1‐{2‐oxo‐2‐[2‐(pyrazin‐2‐ylcarbonyl)hydrazin‐1‐yl]ethyl}cyclohexyl)methyl]pyrazine‐2‐carboxamide monohydrate (Pyr‐Gpn‐NN‐NH‐Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans–gauche (tg) conformation for the gabapentin (Gpn) residue around the Cγ—Cβ1) and Cβ—Cα2) bonds. The molecular conformation is stabilized by intramolecular N—H...N hydrogen bonds and weak C—H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N—H...O and O—H...O hydrogen bonds together with weak C—H...O and π–π inteactions.  相似文献   

13.
Crystals of brucinium 3,5‐dinitro­benzoate methanol solvate, C23H27N2O4+·C7H3N2O6·CH3OH, (I), brucinium 3,5‐dinitro­benzoate methanol disolvate, C23H27N2O4+·C7H3N2O6·2CH3OH, (II), and brucinium 3,5‐dinitro­benzoate trihydrate, C23H27N2O4+·C7H3N2O6·3H2O, (III), were obtained from methanol [for (I) and (II)] or ethanol solutions [for (III)]. The brucinium cations and 3,5‐dinitro­benzoate anions are linked by ionic N—H+⋯O hydrogen bonds. In the crystals of (I), (II) and (III), the brucinium cations exhibit different modes of packing, viz. corrugated ribbons, pillars and corrugated monolayer sheets, respectively. While in (III), the amide O atom of the brucinium cation participates in O—H⋯O hydrogen bonds, in which water mol­ecules are the donors, in (I) and (II), the amide O atom of the brucinium cation is involved in weak C—H⋯O hydrogen bonds and other brucinium cations are the donors.  相似文献   

14.
The title compound, [Cu(C7H3O6S)2(C10H9N3)2][CuI(C10H9N3)2]2·2H2O, consists of anionic CuII moieties, cationic CuI species and uncoordinated water mol­ecules. The anionic dimeric unit consists of one crystallographically independent fully deprotonated 5‐sulfosalicylate (2‐oxido‐5‐sulfonatobenzoate) anion, a di‐2‐pyridylamine group and a CuII atom. Each CuII atom is five‐coordinate within a square‐pyramidal geometry. The anion lies on a special position of site symmetry. In the cationic monomer, the CuI atom adopts tetra­hedral geometry. The cations and anions are connected by O—H·O and N—H·O hydrogen bonds.  相似文献   

15.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

16.
Reacting stoichiometric amounts of 1‐(diphenylphosphino)ferrocene­carboxylic acid and [Ti(η5‐C5HMe4)22‐Me3SiC[triple‐bond]CSiMe3)] produced the title carboxyl­atotitanocene complex, [{μ‐1κ2O,O′:2(η5)‐C5H4CO2}{2(η5)‐C5H4P(C6H5)2}{1(η5)‐C5H(CH3)4}2FeIITiIII] or [FeTi(C9H13)2(C6H4O2)(C17H14P)]. The angle subtended by the Ti/O/O′ plane, where O and O′ are the donor atoms of the κ2‐carboxy­late group, and the plane of the carboxyl‐substituted ferrocene cyclo­penta­dienyl is 24.93 (6)°.  相似文献   

17.
5‐Sulfosalicylic acid (5‐SSA) and 3‐aminopyridine (3‐APy) crystallize in the same solvent system, resulting in two kinds of 1:1 proton‐transfer organic adduct, namely 3‐aminopyridinium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, C5H7N2+·C7H5O6S·H2O or 3‐APy·5‐SSA·H2O, (I), and the anhydrous adduct, C5H7N2+·C7H5O6S or 3‐APy·5‐SSA, (II). Both compounds have extensively hydrogen‐bonded three‐dimensional layered polymer structures, with interlayer homo‐ and heterogeneous π–π interactions in (I) and (II), respectively.  相似文献   

18.
The crystal structures of quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate trihydrate, C9H8N+·C7H5O6S·3H2O, (I), 8‐hydroxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate monohydrate, C9H8NO+·C7H5O6S·H2O, (II), 8‐amino­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate dihydrate, C9H9N2+·C7H5O6S·2H2O, (III), and 2‐carboxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate quinolinium‐2‐carboxylate, C10H8NO2+·C7H5O6S·C10H7NO2, (IV), four proton‐transfer compounds of 5‐sulfosalicylic acid with bicyclic heteroaromatic Lewis bases, reveal in each the presence of variously hydrogen‐bonded polymers. In only one of these compounds, viz. (II), is the protonated quinolinium group involved in a direct primary N+—H⋯O(sulfonate) hydrogen‐bonding interaction, while in the other hydrates, viz. (I) and (III), the water mol­ecules participate in the primary intermediate interaction. The quinaldic acid (quinoline‐2‐carboxylic acid) adduct, (IV), exhibits cation–cation and anion–adduct hydrogen bonding but no direct formal heteromolecular interaction other than a number of weak cation–anion and cation–adduct π–π stacking associations. In all other compounds, secondary interactions give rise to network polymer structures.  相似文献   

19.
The monoclinic cell of di­cyclo­hexyl­ammonium 2,4‐di­chloro­phenoxy­acetate contains four C12H24N+·C5H8Cl2O3? ion pairs. The ammonium N atom is hydrogen bonded to the oxy­gen ends of two carboxyl groups to form a 12‐membered O—C—O?HNH?O—C—O?HNH ring. In (2,4‐di­chloro­phenoxy­lacetato)­bis­(tri­phenyl­phosphine)silver(I), [Ag(C8H5Cl2O3)(C18H15P)2], the carboxyl CO2 unit chelates to the Ag atom in an anisobidentate manner [Ag—O = 2.436 (2) and 2.517 (2) Å]; the Ag atom shows distorted tetrahedral geometry.  相似文献   

20.
A dodecaholmium wheel of [Ho12(L)6(mal)4(AcO)4(H2O)14] ( 1 ; mal=malonate) was synthesized by using ptert‐butylsulfonylcalix[4]arene (H4L) as a cluster‐forming ligand. The wheel consists of three fragments of mononuclear A3? ([Ho(L)(mal)(H2O)]3?), trinuclear B3? ([Ho(H2O)2(mal)(Ho(L)(AcO))2]3?), and C3+ ([Ho(H2O)2]3+), and an alternate arrangement of these fragments (A3?? C3+? B3?? C3+? A3?? C3+? B3?? C3+? ) results in a wheel structure. The longest and shortest diameters of the core were estimated to be 17.7562(16) and 13.6810(13) Å, respectively, and the saddle‐shaped molecule possesses a pocketlike cavity inside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号