首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the benzophenone-photosensitized degradation of films of poly-(vinyl chloride) was studied, both under vacuum and in the presence of oxygen. Initial rapid increases in absorption in the 340 nm region strongly implicate the ketyl radical in the initiation process which involves the abstraction by triplet benzophenone of a methylenic hydrogen from poly(vinyl chloride). Dehydrochlorination then occurs by a chain mechanism, and the conjugated polyene structure produced photosensitizes further initiation and, in the presence of oxygen, photo-oxidation of the polymer.  相似文献   

2.
A kinetic model for the formation of polyene sequences during the thermal degradation of poly(vinyl chloride) in nitrogen is proposed. The model includes a propagation step of the “zipper” type and termination by crosslinking. The initiation can occur randomly or at weak links in the polymer chain. The rate of polyene growth increased with increasing polyene sequence length and passed through a flat maximum at n = 7. The average polyene sequence length was almost constant up to about 0.5% conversion, but then slowly decreased with increasing conversion. This was the result of a larger extent of termination reactions (crosslinking) at higher conversions. At 0.2–0.5% conversion an average polyene sequence length of about 6 was observed. The degradation was carried out in nitrogen at 190°C. The experimental results were obtained from ultraviolet-visible spectrophotometric measurements.  相似文献   

3.
The mechanism of decoloration of thermally degraded poly(vinyl chloride (PVC)) by solvents has been investigated systematically. The main results obtained are as follows. Good solvents for PVC, especially tetrahydrofuran, methyl ethyl ketone, and dioxane are effective for decoloration. The solvent peroxide which is formed by autoxidation of solvent contributes to decoloration. The number of double bonds in degraded PVC decreases as the decoloration proceeds and at the same time the solvent peroxide existing in solvent is consumed. Moreover, the existence of solvent fragments in decolored PVC is recognized. From these results, it is most reasonable to conclude that the decoloration mechanism is as follows: the solvent partially is changed to a solvent peroxide by autoxidation, and the solvent peroxide reacts with polyene double bonds of degraded PVC and breaks down conjugated double bonds, and consequently degraded PVC is decolored.  相似文献   

4.
The mechanism of dehydrochlorination of 2,3-dichlorobutane and chlorinated polybutadiene which are model compounds of head-to-head poly(vinyl chloride) has been investigated by pyrolysis, thermal, and ultraviolet-induced decomposition. The activation energy of dehydrochlorination for head-to-head poly(vinyl chloride) in nitrogen was 23 kcal/mole at temperatures of 150–190°C, which is slightly smaller than that (29 kcal/mole) for head-to-tail poly(vinyl chloride). The conjugated double bonds were formed by thermal and radiation decomposition of head-to-head poly(vinyl chloride), similar to head-to-tail poly(vinyl chloride). The probability of polyene formation by radiation-induced dehydrochlorination is larger than that by thermal decomposition and is affected by the conformation and the molecular motion of the main chain. This may be due to the alternative mechanism of dehydrochlorination in the thermal and radiation decomposition. The amount of head-to-head linkage of poly(vinyl chloride) samples prepared with various catalysts is dependent on polymerization temperature rather than the kinds of catalyst. Commercial poly(vinyl chloride) has 6–7 head-to-head linkages per 1000 monomeric units.  相似文献   

5.
Finely powdered blends of poly(vinyl chloride) (PVC) and polyacrylonitrile (PAN) have been thermally degraded at 275°C for 24 h in an inert atmosphere to effect complete de-hydrochlorination of PVC to a conjugated polyene structure and simultaneous internal polymerization of nitrile groups in PAN to a conjugated polyimine sequence. The room temperature d.c. conductivity of the degraded blends showed clear synergistic behavior. A maximum conductivity has been observed with a blend of 60 PAN/40 PVC which is about 4 orders of magnitude over the linearly weighted average conductivity of the individual degraded homopolymers. The results have been interpreted in terms of a possible donor-acceptor interaction between the degraded homopolymers leading to mutual doping and, hence, an enhanced electrical conductivity. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
7.
8.
Dilute (0.23%) tetrahydrofuran solutions of chemically degraded poly(vinyl chloride) were irradiated with monochromatic light (307,320, or 354 nm) after being degassed or saturated with oxygen. The rates of the resulting photobleaching reactions of the polyene sequences present depended in a complex way on the wavelength of the light used and on the presence or absence of oxygen. During 307-nm irradiation an initial fast decrease in absorbance at 307 nm, which proceeded with a rapidly decreasing quantum yield and which was unaffected by oxygen, was followed by a slower reaction with constant quantum yield that was strongly inhibited by oxygen. The same general trend was observed for solutions irradiated with 320- or 354-nm light but in each case the rates of changes in absorbance at wavelengths other than those irradiated were complex. A mechanism that involves intra- and intermolecular reactions of the polyenes is suggested to explain the observed effects.  相似文献   

9.
Thermal decomposition mechanisms of poly(vinyl chloride) (PVC) and the effects of a few metal oxides on the pyrolysis of PVC were previously reported. In the present work, 33 metal oxides were investigated to determine their effects on the thermal decomposition of PVC, by using a pyrolysis gas chromatograph. Most acidic oxides accelerate the recombination of chlorine atoms with double bonds, since PVC containing these metal oxides easily release lower aliphatics, toluene, ethylbenzene, o-xylene, and chlorobenzenes. On the other hand, most basic metal oxides, such as oxides of alkaline earths or silver, inhibit the recombination. These tendencies observed in the thermal decomposition of PVC agree with the contributions of corresponding metal salts to the dehydrochlorination of PVC proposed by other workers. This means that thermal decomposition or dehydrochlorination of PVC is affected by irregularities in head-to-tail linkages formed by the recombination of chlorine atoms during heat treatment of PVC.  相似文献   

10.
The reactions of poly(vinyl chloride) and butyllithium in tetrahydrofuran were investigated. A deep purple color developed at first with addition of butyllithium to the THF–PVC solution, and a spontaneous color change of the misture occurred successively to blue, green, and finally pale vellow. In these reaction stages, the PVC might be butylated, dehydrochlorinated, and partially lithiated by BuLi. These facts were substantiated by the results of successive reactions with various substances such as Michler's ketone, carbon dioxide, and styrene.  相似文献   

11.
The reaction of elemental sulfur with poly(vinyl chloride) is studied in 1,2,4-trichlorobenzene and without any solvent under various conditions. Black polymers containing 3.77–57.64% chemically bonded sulfur and, according to IR spectroscopy, including >C=C< and >C=S groups in macromolecules are obtained. It is shown that the diffraction curves of poly(vinyl chloride) and of the reaction product containing 7.82% almost coincide but that the thermal stability of the latter is considerably higher than that of the initial polymer. The prospects of the practical use of the products of the reaction of poly(vinyl chloride) with elemental sulfur are demonstrated.  相似文献   

12.
It is found that oxygen accelerates the photodecomposition of poly(vinyl chloride) whereas hydrogen chloride inhibits it. It is postulated that O2 quenches energy-rich polyenes and reacts in the singlet state ultimately yielding carbonyl functions which themselves absorb the radiation and speed up the photodecomposition. The HCl is thought to undergo addition to already formed polyenes thereby reducing the amount of light absorbed and consequently causing retardation.  相似文献   

13.
Reaction of poly(vinyl chloride) (PVC) with superoxide anion was carried out in tetrahydrofuran (THF) at 40°C in a nitrogen atmosphere. Remarkable changes in infrared (IR) spectra of the samples treated with superoxide anion were observed in the following regions: ca. 3300, 1680, 1620, and 765 cm?1, which suggested the formation of hydroxyl groups, α,β-unsaturated ketone groups, and ethylenic structures. Ultraviolet–visible spectra also showed the formation of polyene structures. The content of chlorine in the polymer decreased and that of oxygen increased with reaction time. The reaction mechanism was discussed on the basis of these results.  相似文献   

14.
The molecular parameters of samples of chlorinated poly(vinyl chloride) (CPVC) and chlorinated β,β-dideuterated poly(vinyl chloride) (β,β-d2-CPVC) were determined by gel permeation chromatography (GPC), light scattering, osmometry, and viscometry. Comparison of GPC, light scattering, osmometric, and viscometric data resulted in a discussion of the possibility of degradation and the causes of changes in the solution properties in chlorination of PVC and ββ-dideuterated poly(vinyl chloride) (ββ-d2-PVC). The results obtained are discussed in relation to the mechanism of chlorination of PVC.  相似文献   

15.
16.
17.
A concerted study of poly(vinyl chloride), chlorinated poly(vinyl chloride), and poly(vinylidene chloride) polymers by spectroscopy, thermal analysis, and pyrolysis-gas chromatography resulted in a proposed mechanism for their thermal degradation. Polymer structure with respect to total chlorine content and position was determined, and the influence of these polymer units on certain of the decomposition parameters is presented. Distinguishing differences were obtained for the kinetics of decomposition, reactive macroradical intermediates, and pyrolysis product distributions for these systems. It was determined that chlorinated poly(vinyl chloride) systems with long-chain ? CHCI? units were more thermally stable than the unchlorinated precursor, exhibited increasing activation energy for the dehydrochlorination, and produced chlorine-containing macroradical intermediates and chlorinated aromatic pyrolysis products. The poly(vinyl chloride) polymer was relatively less thermally stable, exhibited decreasing activation energy during dehydrochlorination, and produced polyenyl macro-radical intermediates and aromatic pyrolysis products.  相似文献   

18.
The evidence for a radical elimination of hydrogen chloride during the thermal degradation of homopolymers and copolymers of vinylidene chloride is summarized and confirmed by an ESR spectroscopic study of the degradation residues. However, sufficient differences in the degradation characteristics exist between these polymers and those of vinyl chloride to suggest that a radical process alone is not sufficient. No evidence of a radical process can be obtained from an ESR spectroscopic analysis of the elimination. The paramagnetic character of the degraded polymer is attributed to the polyene structure produced on dehydrochlorination.  相似文献   

19.
The aim of this work was to study the thermo-oxidative dehydrochlorination of rigid and plasticised poly(vinyl chloride)/poly(methyl methacrylate) blends. For that purpose, blends of variable compositions from 0 to 100 wt% were prepared in the presence (15, 30 and 50 wt%) and in the absence of diethyl-2-hexyl phthalate as plasticiser. Their miscibility was investigated by using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Their thermo-oxidative degradation at 180 ± 1 °C was studied and the amount of HCl released from PVC was measured by a continuous potentiometric method. Degraded samples were characterised, after purification, by FTIR spectroscopy and UV-visible spectroscopy. The results showed that the two polymers are miscible up to 60 wt% of poly(methyl methacrylate) (PMMA). This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (CO) of PMMA and hydrogen (CHCl) groups of PVC as shown by FTIR analysis. On the other hand, PMMA exerted a stabilizing effect on the thermal degradation of PVC by reducing the zip dehydrochlorination, leading to the formation of shorter polyenes.  相似文献   

20.
Significant effort has been made in the past by many workers to investigate the mechanism of thermal decomposition of poly(vinyl chloride) (PVC). The presence and role of free radicals has been controversial in this regard. Our data on PVC and chlorinated PVC systems demonstrate the existence of macroradicals in the early stage of thermal decomposition under inert and oxidative atmospheres. Data from conventional thermogravimetric experiments are used in conjunction with the electron spin resonance findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号