首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is concerned with the continuous squeezing flow of Oldroyd-type fluids in a two-dimensional wedge. The flow mimics the lubrication action in a squeezing flow and is important in that there exists a similarity solution for any simple fluid. We are only concerned with Oldroyd-type fluids, however. It is shown by using a parameter continuation method that the Oldroyd-B model has a limiting Weissenberg number. The Phan Thien/Tanner model does not have this limiting Weissenberg number.  相似文献   

2.
Theoretical force-time relationships were derived for squeezing flow of a Newtonian liquid between lubricated rigid and elastic plates. It is shown how the elastic number, representing the ratio between the elastic plate's rigidity and the specimen's viscosity, affects the force-time curve and under what circumstances the fluid specimen's thickness becomes a significant factor. Potential implications of the analysis in oral sensory evaluations of viscous foods are also considered.  相似文献   

3.
The paper reports an exact solution for the squeezing flow from a wedge of a general viscoelastic liquid. To obtain numerical values for the field variables, a network model that allows stress overshoot and shear-thinning in the start-up of a shear flow is adopted. It is found that both these features are important in this transient flow; stress overshoot is responsible for a stiffer response of the fluid (compared to the inelastic case) at moderate time —at large time, shear-thinning dominates and the fluid behaves like an inelastic fluid. On the other hand, the Oldroyd-B fluid always predicts a softer response than the Newtonian one. Furthermore, there is a limiting Weissenberg number above which one component of the stresses of the Oldroyd-B fluid increases unboundedly with time. This limiting Weissenberg number is approximately sol23.  相似文献   

4.
A problem of an incompressible polymer fluid flow past an infinite flat wedge is considered. The flow moves parallel to the plane of symmetry of the wedge and normal to the wedge rib. It is demonstrated that two surfaces of strong discontinuities are needed for the no-slip condition to be satisfied on the wedge surface. Steady solutions of the problem are studied, and the flow is shown to be asymmetric with respect to the plane of symmetry of the wedge.  相似文献   

5.
In calculating the flow about bodies with plane surfaces and sharp edges it is assumed that in the flow regimes with attached shock the latter may be defined in a section normal to the edge from the corresponding relations for the wedge [1, 2], The solution is taken corresponding to a weak shock on a wedge with supersonic velocity behind it. While in the plane case (wedge) this solution will be the only physically realizable solution, in the case of three-dimensional bodies, when there is a slip velocity along the leading edge, the realization of a second wedge solution with a strong shock is conceivable in the section normal to the leading edge if the total velocity behind the shock (with account for the slip velocity along the edge) is supersonic [3].Relative to the undisturbed stream velocity both of these solutions correspond to a weak shock. We present an example when the solution with a strong shock in the section normal to the edge is possible.  相似文献   

6.
Gas Flow in Porous Media With Klinkenberg Effects   总被引:10,自引:0,他引:10  
Gas flow in porous media differs from liquid flow because of the large gas compressibility and pressure-dependent effective permeability. The latter effect, named after Klinkenberg, may have significant impact on gas flow behavior, especially in low permeability media, but it has been ignored in most of the previous studies because of the mathematical difficulty in handling the additional nonlinear term in the gas flow governing equation. This paper presents a set of new analytical solutions developed for analyzing steady-state and transient gas flow through porous media including Klinkenberg effects. The analytical solutions are obtained using a new form of gas flow governing equation that incorporates the Klinkenberg effect. Additional analytical solutions for one-, two- and three-dimensional gas flow in porous media could be readily derived by the following solution procedures in this paper. Furthermore, the validity of the conventional assumption used for linearizing the gas flow equation has been examined. A generally applicable procedure has been developed for accurate evaluation of the analytical solutions which use a linearized diffusivity for transient gas flow. As application examples, the new analytical solutions have been used to verify numerical solutions, and to design new laboratory and field testing techniques to determine the Klinkenberg parameters. The proposed laboratory analysis method is also used to analyze data from steady-state flow tests of three core plugs from The Geysers geothermal field. We show that this new approach and the traditional method of Klinkenberg yield similar results of Klinkenberg constants for the laboratory tests; however, the new method allows one to analyze data from both transient and steady-state tests in various flow geometries.  相似文献   

7.
A new instrumental setup, which is based on the oscillatory squeezing flow model, was developed to characterize the viscoelastic properties of foods and biopolymers. Analysis of the data was performed by two different approaches. The first approach employed principles of vibration to determine viscous damping and elasticity of the sample harmonically compressed between two plates. The second approach involved the use of additional calculations based on the squeezing flow model which were linked to concepts of vibration analysis, such as mechanical impedance, to determine fundamental rheological parameters like complex viscosity and related (elastic and viscous) moduli. The experimental setup for the method is simple to use and could be attached to existing commercial instruments such as texture analyzers and universal testing machines. The use of the proposed method with this type of instruments would provide them with the additional capability of performing dynamic rheological testing. The dynamic mass of the instrument was significantly low when compared to that of other instruments that use similar principles. This low dynamic mass enabled the use of relatively higher frequencies for the testing of the samples. Comparison of the viscous and elastic moduli obtained with the proposed method and from conventional rheometers for a variety of foods and biopolymers showed good agreements.  相似文献   

8.
This paper reports the results of modelling the biaxial extension of soft solids in lubricated squeezing flow geometry. The nonlinear constitutive model including the single mode Phan-Thien Tanner (PTT) model has been used to model the behaviour of different materials such as a soft tissue (pig liver) and three wheat flours with different protein contents. These were used to evaluate the usefulness of the method and to establish how different compositional or structural parameters could be relevant in determining the rheological behaviour of soft solids. From this study it was found that homogeneous uniaxial compression can be achieved in lubricated squeezing flow. Modelling results are in good agreement with experimental results for all the materials considered.  相似文献   

9.
The fluid-mechanics equations of a two-velocity, two-temperature medium are used to investigate flow near the stagnation point of a blunt body washed by a hypersonic stream of gas containing solid or liquid deformed particles. The effect of particles of the gasdynamic flow parameters is analyzed. A relaxation layer was found to occur near the body, with marked changes in the gas parameters. It is shown that the presence of particles in the flow reduces the shock stand-off distance. The results of computations on the dynamics and heating of particles in the shock layer are discussed. A solution in finite form is obtained in the limiting case of fine particles by the method of asymptotic expansions. The motion of solid or liquid particles in hypersonic shock layers has been the subject of several papers [1–6], in which particle dynamics was examined, assuming that the particles have a negligible influence on the gasdynamic flow parameters. The solutions obtained are therefore limited to the case of low mass particle concentration in the incident flow. A numerical solution not subject to this limitation was obtained in [7] for supersonic two-phase flow over a wedge.  相似文献   

10.
The problem of elastic wedge impact onto the free surface of an ideal incompressible liquid of infinite depth is considered. The liquid flow is two-dimensional, symmetric and potential. The side walls of the wedge are modelled as Euler beams, which are either simply supported or connected to the main structure by linear springs. The liquid flow, the deflection of wedge walls and the size of wetted region are determined simultaneously within the Wagner theory of water impact. We are concerned with the impact conditions of strong coupling between the hydrodynamic loads and the structural response. The coupling is well pronounced for elastic wedges with small deadrise angles. This is the case when the fully nonlinear models fail and approximate models based on the Wagner approach are used. In contrast to the existing approximate models, we do not use any further simplifications within the Wagner theory. Calculations of the velocity potential are reduced to analytical evaluation of the added-mass matrix. Hydrodynamic pressures are not evaluated in the present analysis. In order to estimate the maximum bending stresses, both stages when the wedge surface is partially and totally wetted are considered.Three approximate models of water impact, which are frequently used in practical computations, are examined and their predictions are tested against the present numerical solution obtained by the normal mode method within the Wagner theory. It is shown that the decoupled model of elastic wedge impact, which does not account for the beam inertia, provides a useful formula for estimating the maximum bending stress in thick wedge platings.  相似文献   

11.
It is well known that, when the vertex angle of a straight wedge is less than the critical angle, there exists a shock-front emanating from the wedge vertex so that the constant states on both sides of the shock-front are supersonic. Since the shock-front at the vertex is usually strong, especially when the vertex angle of the wedge is large, then a global flow is physically required to be governed by the isentropic or adiabatic Euler equations. In this paper, we systematically study two-dimensional steady supersonic Euler (i.e. nonpotential) flows past Lipschitz wedges and establish the existence and stability of supersonic Euler flows when the total variation of the tangent angle functions along the wedge boundaries is suitably small. We develop a modified Glimm difference scheme and identify a Glimm-type functional, by naturally incorporating the Lipschitz wedge boundary and the strong shock-front and by tracing the interaction not only between the boundary and weak waves, but also between the strong shock-front and weak waves, to obtain the required BV estimates. These estimates are then employed to establish the convergence of both approximate solutions to a global entropy solution and corresponding approximate strong shock-fronts emanating from the vertex to the strong shock-front of the entropy solution. The regularity of strong shock-fronts emanating from the wedge vertex and the asymptotic stability of entropy solutions in the flow direction are also established.  相似文献   

12.
The Ericksen-Leslie continuum theory of anisotropic fluids is here used to examine the behaviour of the orientation pattern within the bulk of a fluid that is undergoing an extensional-type of flow. The flow (which is irrotational and generally unsteady) is considered to be generated by application of prescribed normal stresses, and the orientation pattern (represented by a director field n) is taken to be spatially homogeneous but time-dependent. By means of a phase-plane analysis it is shown that, in stretching flows, the director eventually aligns parallel to the direction of imposed stretch, whereas in squeezing-type flows it eventually lies in the plane normal to the direction of squeezing. In both cases the lateral components of n may vary non-monotonically in time, before approaching their asymptotic values; also the lateral components of velocity may change sign during flow.A two-parameter classification is given of all possible modes of behaviour of these model fluids in these flows. Also analytical solutions are obtained for certain special cases, such as axisymmetric flow.  相似文献   

13.
Force-time relationships of a double-layered array of two power law liquids in squeezing flow at a constant displacement rate were generated with a computer. As in the case of a single layer, lubrication, or lack of it, has the strongest influence on the magnitude of the forces and the flow pattern. Transient flow regimes that were prominent in the behavior of Newtonian liquid arrays in lubricated squeezing flow were also found in the behavior of the power law liquids. Their prominence was influenced by the liquid's flow index and it was drastically magnified as the differences in the liquid's consistency increased.  相似文献   

14.
The paper is concerned with the squeezing flow of a model suspension fluid. The numerical solution obtained by a time-dependent Boundary Element Method is compared to an asymptotic solution at large radius. It is found that the kinematics are Newtonian in character, and the fibres quickly align themselves radially. Consequently, the squeezing force is only weakly dependent on the initial orientations of the fibres and the device can be used for measuring the effective viscosity of the suspension. The effective viscosity found from the squeezing flow agrees surprisingly well with experimental data and numerical data derived from the falling sphere geometry at low volume fractions ( < 0.1).  相似文献   

15.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

16.
In recent years considerable interest has developed in the problems of steady-state supersonic flow of a mixture of gases about bodies with the formation of detonation waves and slow combustion fronts. This is due in particular to the problem of fuel combustion in a supersonic air stream.In [1] the problem of supersonic flow past a wedge with a detonation wave attached to the wedge apex is solved. This solution is based on using the equation of the detonation polar obtained in [2]-the analog of the shock polar for the case of an exothermic discontinuity. In [3] a solution is given of the problem of cone flow with an attached detonation wave, and [4] presents solutions of the problems of supersonic flow past the wedge and cone with the formation of attached adiabatic shocks with subsequent combustion of the mixture in slow combustion fronts. In the two latter studies two different solutions were also found for the problem of flow past a point ignition source, one solution with gas combustion in the detonation wave, the other with gas combustion in the slow combustion front following the adiabatic shock. These solutions describe two different asymptotic pictures of flow of a combustible gas mixture past bodies.In an experimental study of the motion of a sphere in a combustible gas mixture [5] it was found that the detonation wave formed ahead of the sphere splits at some distance from the body into an ordinary (adiabatic) shock and a slow combustion front. Arguments are presented in [6] which make it possible to explain this phenomenon and in certain cases to predict its occurrence.The present paper presents examples of the calculation of flow of a combustible gas mixture past a sphere with a detonation wave in the case when the wave does not split. In addition, the flow near the point at which the detonation wave splits is analyzed for the case when splitting occurs where the gas velocity behind the wave is greater than the speed of sound. This analysis shows that in the given case the flow calculation may be carried out without any particular difficulties. On the other hand, the calculation of the flow for the case when the point of splitting is located in the subsonic portion of the flow behind the wave (or in the region of influence of the subsonic portion of the flow) presents difficulties. This flow case is similar to the problem of the supersonic jet of finite width impacting on an obstacle.  相似文献   

17.
The steady boundary-layer flow of a non-Newtonian fluid, represented by a power-law model, over a moving wedge in a moving fluid is studied in this paper. The transformed boundary-layer equation is solved numerically for some values of the involved parameters. The effects of these parameters on the skin friction coefficient are analyzed and discussed. It is found that multiple solutions exist when the wedge and the fluid move in the opposite directions, near the region of separation. It is also found that the drag force is reduced for dilatant fluids compared to pseudo-plastic fluids.  相似文献   

18.
A typical class of boundary conditions for squeeze flow problems in lubrication approximation is the one in which the squeezing rate and the width between the squeezing plates are constant. This hypothesis is justified by claiming that the plates moves so slowly that they can be considered static. In this short note we prove that this assumption leads to a contradiction and hence cannot be used.  相似文献   

19.
This paper presents the general solutions of antiplane electro-mechanical field solutions for a piezoelectric finite wedge subjected to a pair of concentrated forces and free charges. The boundary conditions on the circular segment are considered as fixed and grounded. Employing the finite Mellin transform method, the stress and electrical displacement at all fields of the piezoelectric finite wedge are derived analytically. In addition, the singularity orders and intensity factors of stress and electrical displacement can also be obtained. These parameters can be applied to examine the fracture behavior of the wedge structure. After being reduced to the problem of an antiplane edge crack or an infinite wedge in a piezoelectric medium, the results compare well with those of previous studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号