首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
On Mixed Error Estimates for Elliptic Obstacle Problems   总被引:1,自引:0,他引:1  
We establish in this paper sharp error estimates of residual type for finite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a new interpolator which enables us to eliminate inactive data from the error estimators. One application of our mixed error estimates is to construct a posteriori error indicators reliable and efficient up to higher order terms, and these indicators are useful in mesh-refinements and adaptive grid generations. In particular, by approximating the a priori part with some a posteriori quantities we can successfully track the free boundary for elliptic obstacle problems.  相似文献   

2.
In this paper, we present a posteriori error estimates of gradient recovery type for elliptic obstacle problems. The a posteriori error estimates provide both lower and upper error bounds. It is shown to be equivalent to the discretization error in an energy type norm for general meshes. Furthermore, when the solution is smooth and the mesh is uniform, it is shown to be asymptotically exact. Some numerical results which demonstrate the theoretical results are also reported in this paper.  相似文献   

3.
We consider the a posteriori error estimates for finite element approximations of the Stokes–Darcy system. The finite element spaces adopted are the Hood–Taylor element for the velocity and the pressure in fluid region and conforming piecewise quadratic element for the pressure in porous media region. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We consider the coupling of dual‐mixed finite elements and boundary elements to solve a mixed Dirichlet–Neumann problem of plane elasticity. We derive an a‐posteriori error estimate that is based on the solution of local Dirichlet problems and on a residual term defined on the coupling interface. The general error estimate does not make use of any special finite element or boundary element spaces. Here the residual term is given in a negative order Sobolev norm. In practical applications, where a certain boundary element subspace is used, this norm can be estimated by weighted local L2‐norms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.  相似文献   

6.
We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results.  相似文献   

7.
In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature.  相似文献   

8.
The purpose of this article is to derive a posteriori error estimates for the H 1-Galerkin mixed finite element method for parabolic problems. We study both semidiscrete and fully discrete a posteriori error analyses using standard energy argument. A fully discrete a posteriori error analysis based on the backward Euler method is analysed and upper bounds for the errors are derived. The estimators yield upper bounds for the errors which are global in space and time. Our analysis is based on residual approach and the estimators are free from edge residuals.  相似文献   

9.
We consider a symmetric Galerkin method for the coupling of finite elements and boundary elements for elliptic problems with a monotone operator in the finite element domain. We derive an a posteriori error estimator which involves the solution of equilibrated local Neumann problems in the finite element domain and requires computation of a residual term on the coupling interface. Finally, we discuss a similar approach for a coupling with Signorini contact conditions on the interface. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Andreas Veeser The dual weighted residual (DWR) method yields reliable a posteriorierror bounds for linear output functionals provided that theerror incurred by the numerical approximation of the dual solutionis negligible. In that case, its performance is generally superiorthan that of global ‘energy norm’ error estimatorswhich are ‘unconditionally’ reliable. We presenta simple numerical example for which neglecting the approximationerror leads to severe underestimation of the functional error,thus showing that the DWR method may be unreliable. We proposea remedy that preserves the original performance, namely a DWRmethod safeguarded by additional asymptotically higher ordera posteriori terms. In particular, the enhanced estimator isunconditionally reliable and asymptotically coincides with theoriginal DWR method. These properties are illustrated via theaforementioned example.  相似文献   

11.
A posteriori error estimates are derived for a stabilized discontinuous Galerkin method (DGM) [1]. Equivalence between the error norm and the norm of the residual functional is proved, and consequently, global error estimates are obtained by estimating the norm of the residual. One- and two-dimensional numerical experiments are shown for a reaction-diffusion type model problem.  相似文献   

12.
In this paper, we combine the usual finite element method with a Dirichlet‐to‐Neumann (DtN) mapping, derived in terms of an infinite Fourier series, to study the solvability and Galerkin approximations of an exterior transmission problem arising in non‐linear incompressible 2d‐elasticity. We show that the variational formulation can be written in a Stokes‐type mixed form with a linear constraint and a non‐linear main operator. Then, we provide the uniqueness of solution for the continuous and discrete formulations, and derive a Cea‐type estimate for the associated error. In particular, our error analysis considers the practical case in which the DtN mapping is approximated by the corresponding finite Fourier series. Finally, a reliable a posteriori error estimate, well suited for adaptive computations, is also given. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, some a posteriori error estimates of the finite-difference streamline-diffusion method for one- and two-dimensional time-dependent convection-dominated diffusion equations are presented, which can be used to reasonably adjust space mesh. Numerical results show that this method of local refinement is feasible and effective.  相似文献   

14.
In this article we present strategies to improve the quality of adaptive FE‐approximations measured in terms of linear functionals. The ideas are based on the so called dual‐weighted‐residual (DWR) approach to a posteriori error control for FE‐schemes. In more details, we exploit those parts of an underlying error representation, which are completely computable, to improve the FE‐solution. Furthermore, the remaining parts of the error identity can be estimated by well‐established a posteriori energy estimates yielding reliable error bounds for the postprocessed values. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

15.
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.  相似文献   

16.
We consider a singularly perturbed reaction–diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.  相似文献   

17.
The paper deals with a singularly perturbed reaction diffusionmodel problem. The focus is on reliable a posteriori error estimatorsfor the H1 seminorm that can be applied to anisotropic finiteelement meshes. A residual error estimator and a local problemerror estimator are proposed and rigorously analysed. They arelocally equivalent, and both bound the error reliably. Threemodifications of these estimators are introduced and discussed. Much attention is given to the performance of the error estimatorin numerical experiments. This helps to identify those estimatorsthat are suitable for practical applications.  相似文献   

18.
In this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf-sup constant is available, which is confirmed by some numerical results.  相似文献   

19.
We consider the mixed finite element method with Lagrange multipliers as applied to second‐order elliptic equations in divergence form with mixed boundary conditions. The corresponding Galerkin scheme is defined by using Raviart‐Thomas spaces. We develop a posteriori error analyses yielding a reliable and efficient estimate based on residuals, and a reliable and quasi‐efficient estimate based on local problems, respectively. Several numerical results illustrate the suitability of these a posteriori estimates for the adaptive computation of the discrete solutions. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

20.
A singularly perturbed convection–diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously. The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated. The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers. Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号