首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The room temperature Stokes and anti-Stokes Raman spectra of liquid CCl(4) have been recorded. The intensity ratios of anti-Stokes to Stokes Raman bands as a function of Raman shift are obtained in agreement with polarizability theory. The depolarization ratio rho (nu) as a function of Raman shift is obtained also in agreement with automatically scanned depolarization ratio rho (nu). Ratio of the intensity of the isotopic nu(1) bands indicates small deviation from the theoretical relative abundance of CCl(4) isotopes. The intensity ratio of the [nu(3)-nu(4), (nu(1)+nu(4))-nu(4)] and nu(1) bands is obtained. The consequences of the presence of different isotopes of CCl(4) on the depolarization ratio of its vibrational bands are discussed. The effects of impurities in liquid CCl(4) on depolarization ratio of the nu(1) band are estimated.  相似文献   

2.
Depolarisation ratios rho have been measured for the Raman spectra of solutions of composition (NH4)2 SO4*11H2O and (CH3)4NBr*29D2O. Even though the former's vibration spectrum shows clear evidence of lowered ion symmetries (presence of nu1 of SO4(2-) in the IR spectrum, IR versus R nu(max) shifts for nu3 and nu4 of SO4(2-) and nu4 of NH4+) nu1 of SO4(2-) has (apparent) rho of only 0.014, while nu2, nu3 and nu4 of SO4(2-) and nu4 (probably also nu2) of NH4+ have rho in the range 0.73-0.77; within the experimental error and base line uncertainty the latter are equal to 0.75, i.e. to rho(max) with the geometry of the optics used. For (CH3)4NBr symmetric N+-C stretching has rho 0.012; all-in-phase C-H stretching and four overtones in Fermi resonance with it have rho in the range 0.02-0.035, but the deviation from zero here is in part due to underlying or overlapping depolarised bands. The sufficiently well isolated antisymmetric CH stretching and degenerate CH bending bands again have rho in the range 0.74-0.76. These results show that the selection rules in respect of rho, which apply strictly only to isolated molecules, are for practical purposes still valid for molecules in strongly symmetry-distorting external environments in the liquid phase. More specifically: (A) During vibrations in which quasi-spherical intramolecular symmetry is retained, the externally caused aspherical component of the polarizability ellipsoid does not change aspherically to a sufficient extent for an appreciably intense anisotropic Raman band to appear. (B) During intramolecularly anti-symmetric vibrations of symmetric molecules, the portion of the externally caused distortion of the polarizability ellipsoid that fails to cancel over a whole vibration period is not large enough to give rise to an appreciably intense isotropic component of the Raman band. This means in practice rho for these Raman bands is still rho(max), even for concentrated aqueous solutions.  相似文献   

3.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

4.
The mineral rhodonite an orthosilicate has been characterised by Raman spectroscopy. The Raman spectra of three rhodonites from Broken Hill, Pachapaqui and Franklin were compared and found to be similar. The spectra are characterised by an intense band at around 1000 cm(-1) assigned to the nu(1) symmetric stretching mode and three bands at 989, 974 and 936 cm(-1) assigned to the nu(3) antisymmetric stretching modes of the SiO(4) units. An intense band at around 667 cm(-1) was assigned to the nu(4) bending mode and showed additional bands exhibiting loss of degeneracy of the SiO(4) units. The low wave number region of rhodonite is complex. A strong band at 421.9 cm(-1) is attributed to the nu(2) bending mode. The spectra of the three rhodonite mineral samples are similar but subtle differences are observed. It is proposed that these differences depend upon the cationic substitution of Mn by Ca and/or Fe(2+) and Mg.  相似文献   

5.
Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.  相似文献   

6.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

7.
A series of tungstate bearing minerals including scheelite, stolzite, ferberite, hübnerite, wolframite, russellite, tungstenian wulfenite and cuprotungstite have been analyzed by Raman microscopy. The results of the Raman spectroscopic analysis are compared with published data. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the pargenetic relationships between the minerals. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals. These minerals have characteristically different Raman spectra. The nu1(Ag) band is observed at 909 cm(-1) and although the corresponding nu1(Bu) vibration should be inactive a minor band is observed around 894 cm(-1). The bands at 790 and 881 cm(-1) are associated with the antisymmetric and symmetric Ag modes of terminal WO2. The band at 695 cm(-1) is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The nu4(Eg) band was absent for scheelite. The bands at 353 and 401 cm(-1) are assigned as either deformation modes or as r(Bg) and delta(Ag) modes of terminal WO2. The band at 462 cm(-1) has an equivalent band in the infrared at 455 cm(-1) assigned as delta(as)(Au) of the (W2O4)n chain. The band at 508 cm(-1) is assigned as nu(sym)(Bg) of the (W2O4)n chain.  相似文献   

8.
Raman spectroscopy has been used to study the tellurite minerals spiroffite and carlfriesite, which are minerals of formula type A(2)(X(3)O(8)) where A is Ca(2+) for the mineral carlfriesite and is Zn(2+) and Mn(2+) for the mineral spiroffite. Raman bands for spiroffite observed at 721 and 743 cm(-1), and 650 cm(-1) are attributed to the nu(1) (Te(3)O(8))(2-) symmetric stretching mode and the nu(3) (Te(3)O(8))(2-) antisymmetric stretching modes, respectively. A second spiroffite mineral sample provided a Raman spectrum with bands at 727 cm(-1) assigned to the nu(1) (Te(3)O(8))(2-) symmetric stretching modes and the band at 640cm(-1) accounted for by the nu(3) (Te(3)O(8))(2-) antisymmetric stretching mode. The Raman spectrum of carlfriesite showed an intense band at 721 cm(-1). Raman bands for spiroffite, observed at (346, 394) and 466 cm(-1) are assigned to the (Te(3)O(8))(2-)nu(2) (A(1)) bending mode and nu(4) (E) bending modes. The Raman spectroscopy of the minerals carlfriesite and spiroffite are difficult because of the presence of impurities and other diagenetically related tellurite minerals.  相似文献   

9.
Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.  相似文献   

10.
Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.  相似文献   

11.
Raman spectroscopy of selected lead minerals of environmental significance   总被引:2,自引:0,他引:2  
The Raman spectra of the minerals cerrusite (PbCO(3)), hydrocerrusite (Pb(2)(OH)(2)CO(3)), phosgenite (Pb(2)CO(3)Cl(2)) and laurionite (Pb(OH)Cl) have been used to qualitatively determine their presence. Laurionite and hydrocerrusite have characteristic hydroxyl stretching bands at 3506 and 3576 cm(-1). Laurionite is also characterised by broad low intensity bands centred at 730 and 595 cm(-1) attributed to hydroxyl deformation vibrations. The minerals cerrusite, hydrocerrusite and phosgenite have characteristic CO (nu(1)) symmetric stretching bands observed at 1061, 1054 and 1053 cm(-1). Phosgenite displays complexity in the CO (nu(3)) antisymmetric stretching region with bands observed at 1384, 1327 and 1304 cm(-1). Cerrusite shows bands at 1477, 1424, 1376 and 1360 cm(-1). The hydrocerrusite Raman spectrum has bands at slightly different positions from cerrusite, with bands at 1479, 1420, 1378 and 1365 cm(-1). The complexity of the nu(3) region is also reflected in the nu(2) and nu(4) regions with the observation of multiple bands. Laurionite is characterised by two intense bands at 328 and 272 cm(-1) attributed to PbO and PbCl stretching bands. Importantly, all four minerals are characterized by their Raman spectra, enabling the mineral identification in leachates and contaminants of environmental significance.  相似文献   

12.
The doubly resonant IR-UV sum-frequency vibrational spectroscopy (SFVS) of 1,1'-bi-2-naphthol (BN) solution and its dispersion spectra are analyzed and computed using the ZINDO//AM1 calculation and the direct approach of Raman scattering tensor calculation, which is based on calculations of Franck-Condon factors and on differentiation of the electronic transition moments with respect to the vibrational normal modes. The calculated results indicate that, for the most intense vibrational bands observed in the SFVS experiment, the calculated frequencies, symmetry, order, intensities, and pattern of the enhanced vibrational modes agree with experiment qualitatively, and due to the Franck-Condon progression, there are the doublet peaks in the corresponding resonant sum-frequency dispersion spectra. The polarization resonance Raman spectra of BN for the vibrational modes appearing in SFVS are also computed and associated with the experiment SFVS of BN. This direct evaluation approach of Raman tensors may provide a way of assigning the doubly resonant IR-UV SFVS.  相似文献   

13.
Acid mine drainage is formed when pyrite (FeS(2)) is exposed and reacts with air and water to form sulfuric acid and dissolved iron. Tinto River (Huelva, Spain) is an example of this phenomenon. In this study, Raman spectroscopy has been used to investigate the speciation of the system iron(III)-sulfuric acid-water as an approach to Tinto River's aqueous solutions. The molalities of sulfuric acid (0.09 mol/kg) and iron(III) (0.01-1.5 mol/kg) were chosen to mimic the concentration of the species in Tinto River waters. Raman spectra of the solutions reveal a strong iron(III)-sulfate inner-sphere interaction through the nu(1) sulfate band at 981 cm(-1) and its shoulder at 1005 cm(-1). Iron(III)-sulfate interaction may also be facilitated by hydrogen bonds and monitored in the Raman spectra through the symmetric stretching band of bisulfate at 1052 cm(-1) and a shoulder at 1040 cm(-1). Other bands in the low-frequency region of the Raman spectra are attributed to the hydrogen-bonded complexes formation as well.  相似文献   

14.
The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV.  相似文献   

15.
Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature. The nonadsorbed and adsorbed molecular structures were deducted by detailed spectral analysis of the RS and SERS spectra, respectively. This analysis also allowed us to propose the particular surface geometry and orientation of these peptides on silver surface, and their specific interaction with the surface. For example, a SERS spectrum of BN8-14 indicates that the interaction of a thioether atom and Trp8 with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide. One of the most prominent and common features in all of the fragments' SERS spectra is a approximately 692 cm (-1) band due to nu(C-S) accompanied by two or three bands of different C-S conformers for all, except BN8-14, which suggests that all of the above-mentioned compounds adsorb on the silver surface through the thioether atom and that the attachment of Trp8 produces limitation in a number of possible C-S conformers adopted on this surface. Our results also show clearly that His12 and CO do not interact with the colloid surface, which supports our earlier results.  相似文献   

16.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

17.
Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg6Cr2(CO3)(OH)16.4H2O. Two bands are observed at 1087 and 1067 cm(-1) with an intensity ratio of approximately 2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm(-1) and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm(-1) and are assigned to the nu4 bending modes. Two Raman bands were observed at 539 and 531 cm(-1) attributed to the nu2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.  相似文献   

18.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

19.
Uranyl micas are based upon (UO(2)PO(4))(-) units in layered structures with hydrated counter cations between the interlayers. Uranyl micas also known as the autunite minerals are of general formula M(UO2)2(XO4)2 x 8-12H2O where M may be Ba, Ca, Cu, Fe(2+), Mg, Mn(2+) or 1/2(HA1) and X is As or P. The structures of these minerals have been studied using Raman microscopy at 298 and 77K. Six hydroxyl stretching bands are observed of which three are highly polarised. The hydroxyl stretching vibrations are related to the strength of hydrogen bonding of the water OH units. Bands in the Raman spectrum of autunite at 998, 842 and 820 cm(-1) are highly polarised. Low intensity band at 915 cm(-1) is attributed to the nu(3) antisymmetric stretching vibration of (UO(2))(2+) units. The band at 820 cm(-1) is attributed to the nu(1) symmetric stretching mode of the (UO(2))(2+) units. The (UO(2))(2+) bending modes are found at 295 and 222 m(-1). The presence of phosphate and arsenate anions and their isomorphic substitution are readily determined by Raman spectroscopy. The collection of Raman spectra at 77K enables excellent band separation.  相似文献   

20.
The polarized and depolarized Raman profiles of supercritical CO(2) have been measured in the region of the nu(2) bending mode (forbidden transition at about 668 cm(-1)) and for the Fermi dyad (1285 and 1388 cm(-1)) along the isotherms 307, 309, 313, and 323 K in a reduced density domain 0.04相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号