首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutual radiation impedance ignored in conventional array directivity formula is introduced into the calculation of array radiation sound field,and a modified array directivity formula considering the mutual radiation impedance is gained according to the superposition principle.Results of computer simulation and experiments for a uniform linear array and a uniform planar array show superior performance on the present of the practical directivity pattern of the modified formula in this paper in comparison to the conventional one.  相似文献   

2.
李道江  陈航  倪云鹿 《声学学报》2012,37(3):319-323
针对常规基阵指向性图计算并未考虑阵元间互辐射阻抗影响这一不足,修正了常规基阵指向性图计算公式。将阵元间的互辐射阻抗引入到水声基阵的辐射声场计算中,并依据叠加原理得到包含阵元间互辐射阻抗的基阵指向性图计算修正公式。15元均匀线列阵和5×5均匀平面阵的计算机仿真和消声水池试验结果表明,该修正公式相比于常规公式更能反映基阵指向性图的真实情况。  相似文献   

3.
李鹏  章新华  付留芳  曾祥旭 《物理学报》2017,66(8):84301-084301
水面水下目标分辨与识别一直是被动声呐探测领域的难题.利用一种水平阵模态域波束形成算法获得己知方位目标声源的各阶模态强度,将其与不同深度的各阶参考模态强度进行匹配,最终实现了对声源的深度估计.仿真结果表明,该算法可以在信噪比为-10 dB的情况下,用300Hz带宽的信号样本,实现对声源深度的有效估计.系统分析了不同参数和不同波导条件对该方法目标深度估计性能的影响.其中,阵元数越多,模态样本数越多,计算频段越宽,方位估计精度越高,有效阵长越长,深度估计的性能越好.阵元间距和波导深度的变化不会影响该方法的深度估计性能,并且该方法的深度估计性能在声速剖面、海底参数等波导条件存在扰动时具有鲁棒性.  相似文献   

4.
一种计算固体中超声脉冲散射声场的边界元法   总被引:1,自引:0,他引:1  
本文分析了用边界元方法计算固体中超声的散射,提出了一种时间域超声散射计算方法,这种方法能动态显示超声散射的全过程,并和动态光弹照片进行了对比。  相似文献   

5.
6.
ITER聚变装置重力支撑有限元模态分析   总被引:1,自引:1,他引:0  
运用有限元分析软件ANSYS建立了ITER装置重力支撑结构环向20°的三维有限元模型,采用子空间法对ITER重力支撑结构系统进行了有限元模态分析,求出了重力支撑系统的前10阶固有频率和振型,并对振型特点进行了分析。  相似文献   

7.
This paper describes a finite element formulation for Landau–Lifschitz–Gilbert equation (LLGE) that is proved to converge as the time and space steps tend to 0 toward a weak solution of LLGE. An order two (in time) scheme is also given and numerical results are presented showing the applicability of the method.  相似文献   

8.
Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 55, No. 3, pp. 478–484, September, 1991.  相似文献   

9.
10.
The doubly asymptotic approximation (DAA) is a canonical relationship for the interaction between surface normal velocity and pressure. Its validity for a slender hemicapped cylinder is examined by formulating a frequency domain version of DAA using the global basis functions employed in the wave-number-based formulation of the surface variational principle [K. Wu and J. H. Ginsberg, ASME J. Vib. Acoust. 120, 392-400 (1998)]. The wet surface impedance matrix, which relates the spectral representation of normal velocity to a corresponding representation of pressure, is obtained according to a second-order version of DAA and according to the surface variational principle. Comparison and interpretation of the results reveals that DAA fails to account for highlights associated with transition from supersonic to subsonic surface waves as the surface wavelength decreases with frequency held constant.  相似文献   

11.
In this work we propose a variational multiscale finite element approximation of thermally coupled low speed flows. The physical model is described by the low Mach number equations, which are obtained as a limit of the compressible Navier–Stokes equations in the small Mach number regime. In contrast to the commonly used Boussinesq approximation, this model permits to take volumetric deformation into account. Although the former is more general than the latter, both systems have similar mathematical structure and their numerical approximation can suffer from the same type of instabilities.  相似文献   

12.
为了实现矢量传感器在圆阵阵型下的应用,文中提出了一种适合于声矢量圆阵的目标方位估计算法。该算法首先将声矢量圆阵阵元域信号分解为一系列相互正交的相位模态,在相位模态域构造声压和质点振速的互协方差矩阵,然后进行MUSIC方位估计.理论分析和仿真结果表明,文中算法比相同阵型的声压阵MUSIC方位估计算法具有更好的噪声抑制能力、方位估计性能以及多目标分辨能力,试验结果也表明本文算法具有更好的噪声抑制能力以及更好的目标方位估计性能。该算法实现了声压和质点振速的相干处理,充分利用了声矢量传感器的平均声强抗噪原理,具有较强的抗各向同性噪声能力,并可以将子空间类DOA(Direction of Arrival)估计算法和相位模态域阵列信号处理技术有机结合起来,实现了声矢量传感器在圆阵阵型条件下的高分辨DOA估计。  相似文献   

13.
In diffuse optical tomography, light transport theory is used to describe photon propagation inside turbid medium. A commonly used simplification for the radiative transport equation is the diffusion approximation due to computational feasibility. However, it is known that the diffusion approximation is not valid close to the sources and boundary and in low-scattering regions. Fokker-Planck equation describes light propagation when scattering is forward-peaked. In this article a numerical solution of the Fokker-Planck equation using finite element method is developed. Approach is validated against Monte Carlo simulation and compared with the diffusion approximation. The results show that the Fokker-Planck equation gives equal or better results than the diffusion approximation on the boundary of a homogeneous medium and in turbid medium containing a low-scattering region when scattering is forward-peaked.  相似文献   

14.
本文提出了一种有限元+边界元——修正的模态分解法用于预报水下结构的振动和声辐射问题.通过引入结构的剩余模态计入被忽略的高阶模态的准静态响应,使模态分解法的收敛性大大改善.文中以轴对称力作用下水下弹性薄球壳振动和声辐射问题为例进行了数值计算,给出了ka=1,2,3和4时球壳表面位移、声压和远场辐射声的计算结果.与原有的方法比较可见,该方法提高了模态分解法的收敛性,特别对远场辐射声指向性尤为明显。  相似文献   

15.
矩形槽光栅的矢量模式理论   总被引:8,自引:7,他引:1  
本文引进满足均匀矢量Helmholtz方程的矢量波函数作为基矢,对矩形槽光栅的槽内和槽外的光场分别进行矢量平面波展开和矢量模式展开,并由耦合条件导出了求解展开系数的方程组,可进行数值计算.该方法可研究入射场的方向和偏振任意时的衍射效率、偏振特性变化等问题.在p偏振和s偏振的特殊情况下所得到的公式与用标量模式理论得到的结果一致.  相似文献   

16.
Computational algorithms that mimic the response of the basilar membrane must be capable of reproducing a range of complex features that are characteristic of the animal observations. These include complex input output functions that are nonlinear near the site's best frequency, but linear elsewhere. This nonlinearity is critical when using the output of the algorithm as the input to models of inner hair cell function and subsequent auditory-nerve models of low- and high-spontaneous rate fibers. We present an algorithm that uses two processing units operating in parallel: one linear and the other compressively nonlinear. The output from the algorithm is the sum of the outputs of the linear and nonlinear processing units. Input to the algorithm is stapes motion and output represents basilar membrane motion. The algorithm is evaluated against published chinchilla and guinea pig observations of basilar membrane and Reissner's membrane motion made using laser velocimetry. The algorithm simulates both quantitatively and qualitatively, differences in input/output functions among three different sites along the cochlear partition. It also simulates quantitatively and qualitatively a range of phenomena including isovelocity functions, phase response, two-tone suppression, impulse response, and distortion products. The algorithm is potentially suitable for development as a bank of filters, for use in more comprehensive models of the peripheral auditory system.  相似文献   

17.
The transfer function of a fiber-optic hydrophone (FOH) is computed for various fiber core radii. The hydrophone is modeled as a rigid disk, with plane waves impinging at normal or oblique incidence. The total sound field is written as the sum of the incident field and the field diffracted from the hydrophone. The diffracted field is approximated by the field generated by a vibrating planar piston in an infinite rigid baffle. For normal incidence and a pointlike fiber core, an analytical solution is presented. For finite fiber core radii, and for oblique incidence, the transfer functions are computed numerically. The calculated transfer functions exhibit an oscillatory frequency dependency that is most pronounced for small fiber cores. The solution for a core radius of 2.5 microm can be very well approximated by the analytical solution for a pointlike core at frequencies of up to 30 MHz. The results for normal incidence can be directly employed to deconvolute ultrasonic pressure signals measured with an FOH. From the transfer functions for oblique incidence, the angular response of the hydrophone is calculated. The angular response obtained here differs significantly from the model commonly used for piezoelectric hydrophones. The effective hydrophone radius derived from the angular response shows a strong frequency dependency. For low frequencies, it is found to be larger than the outer fiber radius, whereas it generally lies between the outer radius and the fiber core radius for frequencies above 10 MHz.  相似文献   

18.
A hybrid modal expansion that combines the free field Green's function and a modal expansion will be presented in this paper based on a review and an extension of the existing modal analysis theories for the sound field in enclosures. The enclosed sound field will be separated into the direct field and reverberant field, which have been treated together in the traditional modal analysis. Studies on a point source in rectangular enclosures show that the hybrid modal expansion converges notably faster than the traditional modal expansions, especially in the region near the source, and introduces much smaller errors with a limited number of modes. The hybrid modal expansion can be easily applied to complex sound sources if the free field responses of the sources are known. Damped boundaries are also considered in this paper, and a set of modified modal functions is introduced, which is shown to be suitable for many damped boundary conditions.  相似文献   

19.
For shallow water waveguides over a layered elastic bottom, modal eigenvalues can be determined by searching the locations in the complex plane of the horizontal wave number at which the complex phase function is a multiple of π [C. T. Tindle and N. R. Chapman, J. Acoust. Soc. Am. 96, 1777-1782 (1994)]. In this paper, a Hamiltonian method is introduced for tracing the path in the complex plane along which the phase function keeps real. The Hamiltonian method can also be extended to compute the broadband modal eigenvalues or the modal dispersion curves in the Pekeris waveguide with fluid/elastic bottoms. For each proper or leaky normal mode, a different Hamiltonian is constructed in the complex plane and used to trace automatically the complex dispersion curve with the eigenvalue in a reference frequency as the initial value. In contrast to the usual methods, the dispersion curve for each mode is determined individually. The Hamiltonian method shows good performance by comparing with KRAKEN.  相似文献   

20.
A complete method for efficient fuzzy modal analysis   总被引:1,自引:0,他引:1  
The objective of this paper is to determine both the fuzzy eigenvalues and eigenvectors of a finite element model defined with fuzzy parameters. The proposed method introduces the concepts of mode shape pairing and the functional dependence of eigensolutions with respect to design parameters. High-order approximations are then introduced to limit the computational cost associated with variability management. Numerical test cases are used to highlight the abilities of this method to predict behaviour modifications due to variations in the physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号