首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the lift–to–drag ratio of a thin delta wing is significantly lower than the lift–to–drag ratio of an infinitely long swept plate with an identical lift force. The effect of sweep on a finite wing may be used by excluding disturbances from the leading edge of the wing via introducing a hardened stream surface (wedge) and increasing the wing length. A three–shock waverider is proposed for choosing the optimal parameters. The sharp wedge may be avoided by replacing planar shock waves by a cylindrical shock wave upstream of the blunted wedge. If the leading edge of the wedge is not parallel to the rib that is a source of the expansion wave, a plate with zero wave drag, generating a lift force, may be obtained behind this rib. The system of regularly intersecting shock waves may be applied to design a forward–swept wing.  相似文献   

2.
The oblique wing effect, i.e., a reduction in the wave drag for given lift, cannot be realized for a delta wing with supersonic leading edges owing to the lift reduction in the wing mid-section. To preserve the effect, the disturbances generated by the delta wing vertex must be eliminated by adding a body (wedge) to the wing by replacing the streamsurfaces behind the shock with rigid surfaces. Moreover, using wing tip deflection, and thereby reducing the wave drag to zero, makes it possible to obtain a lift- drag ratio close to that of the limiting, infinitely long flat plate.  相似文献   

3.
The problem of supersonic flow around bodies close to a wedge was first discussed in the two-dimensional case in [1]. The shock wave was assumed to be attached, and the flow behind it to be supersonic; taking this into account, the angle of the wedge was assumed to be arbitrary. The surface of the body was also arbitrary, provided that it was close to the surface of the wedge. In solution of the three-dimensional problem, there was first considered flow around two supporting surfaces with only slightly different angles of attack [2], and then around a delta wing [3, 4]. In all these articles, the Lighthill method was used to solve the Hilbert boundary-value problem [5, 6]. A whole class of surfaces of bodies with arbitrary edges, under the assumption that the surface of the body was cylindrical, with generatrices directed along the flow lines of the unperturbed flow behind an oblique shock wave, was discussed in [7]. In the present work, the problem is regarded for a broad class of surfaces of bodies, using a new method which generalizes the results of [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 109–117, July–August, 1974.The author thanks G. G. Chernyi for his direction of the work.  相似文献   

4.
With reference to the example of a waverider designed using the streamplanes behind an oblique shock, it is shown that the choice of the planform is strongly influenced by given constraints such as the lift, the volume, and the width. A waverider formed by the streamsurfaces behind a conical shock with a large vertex angle provides the volume and lift required for the orbital re-entry.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 126–131, May–June, 1996.  相似文献   

5.
Some possibilities of improving the lift-to-drag ratio of lifting bodies in a supersonic flow with a plane shock attached to the leading edges are analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 131–141, July–August, 1996.  相似文献   

6.
A complex shock configuration with two triple points can occur during the interaction between an external oblique compression shock and the detached shock ahead of a blunt body (for instance, ahead of a wing or stabilizer edge). This results in the formation of a high-pressure, low-entropy supersonic gas jet [1–6]. Here two flow modes are possible [1], which differ substantially in the intensity of the thermal and dynamic effects of the stream on the blunt body: mode I corresponds to the impact of a supersonic jet [2–6], while the supersonic jet in mode II does not reach the body surface in the domain of shock interaction because of curvature under the effect of a pressure drop. Conditions for the realization of the above-mentioned flow modes are investigated experimentally and theoretically, and an approximate method is proposed to determine the magnitude of the compression shock standoff in the interaction domain. Blunt bodies with plane and cylindrical leading edges are examined. The results of a computation agree satisfactorily with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 97–103, January–February, 1976.The author is grateful to V. V. Lunev for discussing the research and for useful remarks.  相似文献   

7.
The variational problem of the shape of a low-aspect-ratio wing with maximum lift-to-drag ratio in a viscous hypersonic stream is formulated with allowance for the flow structure in the thin compressed layer and the state of the boundary layer, and a numerical-analytic solution of the problem is given. The characteristic shapes of optimum wings are obtained together with the corresponding pressure distributions. The bifurcation of the optimum regime with variation of the wing span is found to exist. It is shown that viscosity, when included in the optimization procedure, can result in a change in the optimized wing shape and reduce the maximum lift-to-drag ratio; however, the gain in lift-to-drag ratio, as compared with the limiting Newtonian value, is still quite appreciable.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 154–164, November–December, 1995.  相似文献   

8.
Special curves, called shock polars, are frequently used to determine the state of the gas behind an oblique shock wave from known parameters of the oncoming flow. For a perfect gas, these curves have been constructed and investigated in detail [1]. However, for the solution of problems associated with gas flow at high velocities and high temperatures it is necessary to use models of gases with complicated equations of state. It is therefore of interest to study the properties of oblique shocks in such media. In the present paper, a study is made of the form of the shock polars for two-parameter media with arbitrary equation of state, these satisfying the conditions of Cemplen's theorem. Some properties of oblique shocks in such media that are new compared with a perfect gas are established. On the basis of the obtained results, the existence of triple configurations in steady supersonic flows obtained by the decay of plane shock waves is considered. It is shown that D'yakov-unstable discontinuities decompose into an oblique shock and a centered rarefaction wave, while spontaneously radiating discontinuities decompose into two shocks or into a shock and a rarefaction wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 147–153, November–December, 1982.  相似文献   

9.
The considered wing has any finite number of inflections in its plane with lines of inflection intersecting at the point of inflection of the leading edge. In the present paper, this generalizes the author's earlier work [1] on flow past the undersurface of a flat wing at unite angle of attack with finite angle of slip and supersonic leading edges. In [1], calculations were not given. The special case of flow without slip in the same situation was considered later in [2], However, this paper contains errors, indicated at the end of the present paper. The calculations given in [2] are not correct. In the quoted papers, the gas flow is assumed to be a perturbation of a homogeneous flow behind a plane oblique shock wave. Such flows are treated systematically in [3]. Here and in [1], we use and generalize the representation of the linearized conservation laws across the shock front as the conditions of a boundary-value problem for an analytic function of a complex variable as obtained in [4, 5]. Calculations are given of the pressure distribution over the span for a number of different flow regimes and the pressure coefficients in the middle of the wing are compared with a numerical solution presented partly in [6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 80–90, September–October, 1979.I am very grateful to V. I. Lapygin for making available a large number of variants of his numerical solution, and to L. E. Pekurovskii for assistance in the calculations.  相似文献   

10.
高压捕获翼位置设计方法研究   总被引:3,自引:2,他引:1  
李广利  崔凯  肖尧  徐应洲 《力学学报》2016,48(3):576-584
高压捕获翼构型是一种合理利用机体/上置翼(简称捕获翼)间的耦合关系提高飞行器升力,进而大幅提高升阻比的高速飞行器新概念构型.基于其设计原理,捕获翼的位置与机体压缩激波和自身二次压缩激波的位置均直接相关,一般难以利用理论方法直接获得.针对这一问题,本文运用均匀实验设计方法在设计空间内获取样本点并利用计算流体力学分析和迭代获得其设计位置,之后通过构造代理模型建立捕获翼位置与设计参数间的模拟映射关系,进而发展了一种捕获翼位置设计的有效方法.在方法研究基础上以锥体-捕获翼组合构型作为实例对其进行验证.结果表明,该方法可在较大设计空间范围内准确判定捕获翼的设计位置.此外,针对这一构型还开展了基于代理模型的设计参数单因素分析.发现在设计空间内,前缘压缩角、来流马赫数、和捕获翼钝化半径等3个关键参数均与捕获翼位置呈单调正比例关系.   相似文献   

11.
Reflection of an oblique shock wave in a reacting gas with a finite length of the chemical–reaction zone is studied. Shock polars for an arbitrary heat release behind the oblique shock wave are constructed. Transition criteria from regular to Mach reflection and back are obtained. It is shown that transition criteria are significantly changed if the reaction–zone length is taken into account.  相似文献   

12.
The calculation of supersonic flow past three-dimensional bodies and wings presents an extremely complicated problem, whose solution is made still more difficult in the case of a search for optimum aerodynamic shapes. These difficulties made it necessary to simplify the variational problems and to use the simplest dependences, such as, for example, the Newton formula [1–3]. But even in such a formulation it is only possible to obtain an analytic solution if there are stringent constraints on the thickness of the body, and this reduces the three-dimensional problem for the shape of a wing to a two-dimensional problem for the shape of a longitudinal profile. The use of more complicated flow models requires the restriction of the class of considered configurations. In particular, paper [4] shows that at hypersonic flight velocities a wing whose windward surface is concave can have the maximum lift-drag ratio. The problem of a V-shaped wing of maximum lift-drag ratio is also of interest in the supersonic velocity range, where the results of the linear theory of [5] or the approximate dependences of the type of [6] can be used.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–133, May–June, 1986.We note in conclusion that this analysis is valid for those flow regimes for which there are no internal shock waves in the shock layer near the windward side of the wing.  相似文献   

13.
A similarity law, which follows from the equations of short waves, describing the motion of a gas with the reflection of a shock wave of small amplitude from a rigid wedge, is formulated. To determine the limits of the applicability of this law, the results of an analysis of the Mach reflection of shock waves of moderate intensity are given. In the calculations, a constant aperture angle of the wedge and a critical angle of incidence of the waves were assumed, and a change in the ratio of the specific heat capacities was accompanied by a variation of the relative excess pressure in the oncoming flow. With such an approach, data obtained for one gas can be used for modelling phenomena in another.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 116–123, May–June, 1977.  相似文献   

14.
The shape of a waverider formed by streamsurfaces behind oblique shocks and rarefaction waves is complicated by equipping the lifting body with a wing and fins. The joining of the wing to the body and the possibility of reducing the wave drag are considered. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 158–165, July–August, 1998.  相似文献   

15.
The direct problem of hypersonic flow past a V-shaped wing with a shock wave detached from the leading edges is solved. The reduced normal force coefficient and the lift-drag (L/D) ratio are calculated for a configuration with a lower part in the shape of a V-wing and a streamwise upper part.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 145–154, May–June, 1993.  相似文献   

16.
孟旭飞  白鹏  刘传振  李盾  王荣 《力学学报》2021,53(12):3310-3320
相比于传统乘波体外形, 双后掠乘波体在保持高超声速良好性能的条件下能够提升乘波体低速气动性能, 但其仍存在低速稳定性不好等缺陷. 本文从密切锥乘波体理论提出给定前缘型线的乘波体设计方法, 通过给定三维前缘型线分别生成具有相同平面投影形状的上反和下反机翼双后掠乘波体. 使用CFD技术评估不同上下反程度外翼乘波体的低速性能, 分析升阻特性以及流场涡结构特点. 选取稳定性判据, 研究上下反翼对纵向和横侧向稳定性的影响. 结果表明, 机翼上下反对乘波体低速升阻特性影响较小; 不同外形均为纵向静不稳定的, 且俯仰力矩变化趋势比较类似, 机翼下反可使气动焦点位置后移, 提升纵向稳定性; 机翼上反有助于提升乘波体的横向静稳定性, 而下反则会下降; 机翼上反可以提升侧向稳定性, 且上反程度越大提升效果越明显; 同时机翼上反使乘波体的偏航动态稳定性有明显提升, 下反则会降低, 影响程度与机翼上下反程度呈正相关. 通过结果分析, 说明通过机翼上下反改善乘波体低速稳定性是可行的, 为乘波体在宽速域高超声速飞行器中的应用拓展了途径.   相似文献   

17.
高压捕获翼前缘型线优化和分析   总被引:1,自引:0,他引:1  
李广利  崔凯  肖尧  徐应洲 《力学学报》2016,48(4):877-885
为分析翼前缘形状变化对高压捕获翼构型气动性能的影响,基于一种锥体组合捕获翼概念构型,采用幂次函数和余弦函数组合形式对翼前缘型线进行了参数化设计,在比较了多项式和径向基函数两种代理模型的拟合精度基础上,以飞行马赫数7,飞行攻角0° 为计算条件,结合使用均匀实验设计方法、计算流体力学、径向基函数代理模型方法和遗传算法,选择升阻比最大化为目标开展了数值优化,最后基于优化结果进行了单参数的灵敏度分析. 优化结果表明,相对于基准外形而言,优化后构型升力系数增大了约8.1%,阻力系数减小了约12.2%,升阻比提高了约23.4%. 此外,灵敏度分析结果表明升阻比与5 个设计参数均呈非线性关系,其中展向角度对升阻比影响最大,其次为幂次曲线的比例参数,其余3 个参数对升阻比的影响相对较弱.   相似文献   

18.
The possibility of mixing enhancement when a design-condition cocurrent jet passes through a stationary oblique shock is investigated. In [4] the effect of such a shock on the mixing layer of flows with Mach numbers M = 3 and 5 was experimentally investigated and it was shown that behind the shock no turbulence is generated. However, irrespective of its effect on the turbulence characteristics, an oblique shock causes deformation of the jet, modifying its dimensions, and in the three-dimensional case the shape of the cross section. The effect of this deformation on mixing, which is shown to be fairly significant, has been investigated theoretically using a numerical method. An approximate relation describing the variation of the maximum admixture concentration in the jet behind the shock is proposed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 61–68, March–April, 1992.The authors are grateful to V. A. Stepanov for useful discussions.  相似文献   

19.
The conditions of realization of regimes, detected in ideal gas theory [1, 2], with a floating Ferri point on the windward side of a wing with supersonic leading edges and breakdown of the conical flow in the presence of turbulent boundary layer separation are studied using experimental data on the flow over conical V-shaped wings. The experiments were carried out on three models of V-shaped wings with sharp leading edges having a convergence angle=40°, apex angles=30, 45, and 90° and lengths along the central chordL=100, 100, and 70 mm, respectively. The free-stream Mach numberM =3, and the unit Reynolds number Re=1.6 ·108 m–1. Boundary layer transition took place 10 mm from the leading edges of the models at a local Reynolds number Re=(1.5–2)·106. Thus, on most of the wing surface the inner shock waves interacted with a turbulent boundary layer. In the experiments we employed; optical methods, which made it possible to observe shadow flow patterns in a plane normal to the rib of the V-shaped wing [3], as well as in the wake behind the wing and its leading edges (Töpler schlieren method); the oil-film visualization method for obtaining data on the position and dimensions of the separation zones and limiting streamline patterns on the surface of the model. The pressure distribution over the wing span was recorded by means of an automated data collection and processing system based on IKD6TD transducers. The errors of the pressure measurements did not exceed 1 %.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 137–150, March–April, 1992.  相似文献   

20.
Problems of compression of a plate on a wedge–shaped target by a strong shock wave and plate acceleration are studied using the equations of dissipationless hydrodynamics of compressible media. The state of an aluminum plate accelerated or compressed by an aluminum impactor with a velocity of 5—15 km/sec is studied numerically. For a compression regime in which a shaped–charge jet forms, critical values of the wedge angle are obtained beginning with which the shaped–charge jet is in the liquid or solid state and does not contain the boiling liquid. For the jetless regime of shock–wave compression, an approximate solution with an attached shock wave is constructed that takes into account the phase composition of the plate material in the rarefaction wave. The constructed solution is compared with the solution of the original problem. The temperature behind the front of the attached shock wave was found to be considerably (severalfold) higher than the temperature behind the front of the compression wave. The fundamental possibility of initiating a thermonuclear reaction is shown for jetless compression of a plate of deuterium ice by a strong shock wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号