首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐field 1H NMR was used in this work for the analysis of mixtures involving crude oils and water. CPMG experiments were performed to determine the transverse relaxation time (T2) distribution curves, which were computed by the inverse Laplace transform of the echo decay data. The instrument's ability of quantifying water and petroleum in biphasic mixtures following different methodologies was tested. For mixtures between deionized water and petroleum, one achieved excellent results, with root mean squared error of cross‐validation (RMSECV) of 0.8% for a regression between the water content (wt %) and the relative area of the water peak in the T2 distribution curve, or a standard deviation of 0.9% for the relationship between the water content and the relative water peak area, corrected by the relative hydrogen index of the crude. In the case of biphasic mixtures of Mn2+‐doped water and crude oils, the best result of RMSECV = 1.6% was achieved by using the raw magnetization decay data for a partial least squares regression. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Nuclear spin–lattice (T1) and spin–spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single‐scan measurement of a 2D T1T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real‐time. We demonstrate that, despite the tremendous speed‐up, the T1T2 correlation maps determined by the single‐scan method are in good agreement with the maps measured by the conventional method. The concept of the single‐scan T1T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.  相似文献   

3.
Crude oil distillates are a highly useful industrial product, mainly for energy generation. Unfortunately, they are rarely studied, mainly due to the low accessibility to products directly obtained from the distillation process, which is a laborious, expensive, and time-consuming operation. This work presents and discusses the use of time-domain nuclear magnetic resonance (TD-NMR) as a simple, affordable, and straightforward tool for the development of correlations supported on the transverse relaxation time (T2) and boiling temperature. The results point out a high convergence between TD-NMR experimental data and the ASTM D2892 method for distillates from light, medium, and heavy oils, with up to 52.20% of accumulated mass and boiling point temperature (Tb) up to 400°C. Furthermore, an unprecedented relationship between T2 values and the accumulated mass of the distillates is first demonstrated. This new insight opens new perspectives for future prediction of accumulated mass for unknown crude oils, placing the TD-NMR relaxometry as an appeal spectroscopy approach with a potential to meaningfully contribute to the daily refining petrochemical industry field operations.  相似文献   

4.
In order to search for better acetylcholinesterase (AchE) inhibitors, the binding properties of AchE with huperizine E, which is a derivative of huperzine A, were investigated with 1H nuclear magnetic resonance (1H NMR) method. The nonselective, selective and double-selective spin-lattice relaxation rates of some protons in huperzine E were acquired in the absence and presence of AchE at a concentration ratio of [ligand]/[protein] = 1: 0.005. The enhancements of selective relaxation rates of these protons were obvious after adding AchE. The molecular motional correlation times of two pairs of protons, H-1a/H-1b and H-2/H-3, in the bound state at T = 298 K were 11.7 and 9.46 ns respectively, while they were 27.7 and 35.2 ps in the free state. All of these show that huperzine E has high binding affinity with AchE. __________ Translated from Acta Chimica Sinica, 2007, 65(5): 415–420 [译自: 化学学报]  相似文献   

5.
Glycidylmethacrylate/vinyl acetate copolymers were prepared by solution polymerization with benzene as a solvent and benzoyl peroxide as an initiator. Copolymer compositions were determined from 1H NMR spectra, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) method and the nonlinear least‐squares error‐in‐variable method (EVM). The reactivity ratios obtained from KT and EVM were rG = 37.4 ± 12.0 and rV = 0.036 ± 0.019 and rG = 35.2 and rV = 0.03, respectively. Complete spectral assignments of 13C and 1H NMR spectra were done with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence and total correlation spectroscopy. The methyl, methine, and methylene carbon resonance showed both stereochemical and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4051–4060, 2001  相似文献   

6.
13C nuclear magnetic resonance spectroscopy was used in a first attempt to differentiate olive oil samples by grades. High resolution 13C NMR Distortionless Enhancement by Polarization Transfer (DEPT) spectra of 137 olive oil samples from the four grades, extra virgin olive oils, olive oils, olive pomace oils and lampante olive oils, were measured. The data relative to the resonance intensities (variables) of the unsaturated carbons of oleate (C-9 and C-10) and linoleate (L-9, L-10 and L-12) chains attached at the 1,3- and 2-positions of triacylglycerols were analyzed by linear discriminant analysis. The 1,3- and 2- carbons of the glycerol moiety of triacylglycerols along with the C-2, C-16 and C-18 resonance intensities of saturated, oleate and linoleate chains were also analyzed by linear discriminant analysis. The three discriminanting functions, which were calculated by using a stepwise variable selection algorithm, classified in the true group by cross-validation procedure, respectively, 76.9, 70.0, 94.4 and 100% of the extra virgin, olive oil, olive pomace oil and lampante olive oil grades.  相似文献   

7.
The tensile and stress‐relaxation properties of an uncrosslinked and a loosely silane‐crosslinked high‐density polyethylene exposed to organic “crude‐oil” penetrants were assessed. The measurements were performed on penetrant‐saturated samples, surrounded by the organic liquid throughout the experiment. The penetrant solubilities in the two polymers were similar and in accordance with predicted values based on the solubility parameter method. The stiffness and strength of the swollen samples were significantly less than those of the dry samples, indicating a plasticization of the amorphous component. Raman spectroscopy on polyethylene exposed to deuterated n‐hexane revealed a penetrant‐induced partial melting/dissolution of the crystal surface and an intact crystal core component. The stress‐relaxation rates, within the time frame of the experiment (~1 s to 18 h), were approximately the same, independent of silane‐crosslinks and the presence of penetrants. This indicated that the mechanical α‐relaxation, which is the main relaxation process occurring in the measured time interval, was not affected by the penetrants. Consequently, its rate seemed to be independent of the crystal surface dissolution (decrease in the content of crystal‐core interface). The shape of the “log stress–log time” curves of the swollen samples was, however, different from that of the dry samples. This was most likely attributed to a time‐dependent saturation of penetrant to a higher level associated with the stretched state of the polymer sample. The silane crosslinks affected only the elongation at break, which was less than that of the uncrosslinked material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 641–648, 2006  相似文献   

8.
The detailed characterization of complex mixtures by NMR is often hampered by the presence of signals from uninformative compounds, the resonances of which overlap with those of the molecules of interest. We provide here a proof of principle for an approach to NMR signal suppression in complex samples using Molecularly Imprinted Polymers (MIPS). Addition of a few milligrams of polymer to a solution traps the target molecule in typical micromolar to millimolar concentration, thus achieving in situ signal suppression, without altering any other spectral features. This method minimized any manipulation or perturbation of the spectrum and was applied to a complex mixture of known compounds and to a plant extract, in both cases spiked with a compound (bisphenol A), which was subsequently removed by selective binding to a complementary MIP. What is described in this report is comparable with microextraction and may in due course be applied to a large number of analytical challenges. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
High resolution 1H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.  相似文献   

10.
Agarose is a tissue‐equivalent material and its imaging characteristics similar to those of real tissues. Hence, the dynamic nuclear polarization studies of 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl (carboxy‐PROXYL) in agarose gel were carried out. The dynamic nuclear polarization parameters such as spin lattice relaxation time, longitudinal relaxivity, leakage factor, saturation parameter and coupling parameter were estimated for 2 mM carboxy‐PROXYL in phosphate‐buffered saline solution and water/agarose mixture (99 : 1). From these results, the spin probe concentration was optimized as 2 mM, and the reduction in enhancement was observed for carboxy‐PROXYL in water/agarose mixture (99 : 1) compared with phosphate‐buffered saline solution. Phantom imaging was also performed with 2 mM concentration of carboxy‐PROXYL in various concentrations of agarose gel at various radio frequency power levels. The results from the dynamic nuclear polarization measurements agree well with the phantom imaging results. These results pave the way for designing model system for human tissues suited to the biological applications of electron spin resonance/Overhauser‐enhanced magnetic resonance imaging.  相似文献   

11.
12.
Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Edible oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. In this research, low-field NMR (LF-NMR) relaxation characteristic data from various sample oils were analyzed. We also suggest a new method for predicting the size of edible oil molecules using LF-NMR relaxation time. According to the relative molecular mass, the carbon chain length and the transverse relaxation time of different sample oils, combined with oil viscosity and other factors, the relationship between carbon chain length and transverse relaxation time rate was analyzed. Various oils and fats in the mixed fluid were displayed, reflecting the composition information of different oils. We further studied the correlation between the rotation correlation time and the molecular information of oil molecules. The molecular composition of the resulting fluid determines its properties, such as viscosity and phase behavior. The results show that low-field NMR can obtain information on the composition, macromolecular aggregation and molecular dynamics of complex fluids. The measurements of grease in the free-fluid state show that the relaxation time can reflect the intrinsic properties of the fluid. It is shown that the composition characteristics and states of complex fluids can be measured using low-field nuclear magnetic resonance.  相似文献   

13.
It is very important to monitor the characteristics of triacylglycerol crystal network in fats, as these crystals have an impact on many food properties such as texture, sensory taste, and extended shelf life. Although time-domain NMR (TD-NMR) is now the reference technique to determine the solid fat index in food, the entire possibilities of this technique are not used. Some NMR studies have been performed to determine its power for the discrimination of polymorphism. In this study, extended investigations proved that TD-NMR could evaluate triacylglycerol (TA) polymorphism, independently from temperature and chain length. Study of the dipolar interactions through second moment M(2), which is characteristic of proton mobility in solid-state samples, provided a new understanding of the structural organization of crystal molecules. Proton spin-lattice relaxation, which has been proved to be a true probe of polymorphism, has provided information on crystal networks. Combination of the two techniques revealed two very interesting kinds of results, i.e. the presence of a minimum spin-lattice relaxation time T(1) for tristearin alpha, which is a characteristic of a dynamic molecular process, and differences in behavior between long and short chain lengths, both at a molecular and a crystal level.  相似文献   

14.
The self-diffusion of a polystyrene-b-poly(ethylene-co-propylene) diblock copolymer dissolved in a preferential solvent for the aliphatic block, n-decane, was investigated by pulsed field gradient NMR. The diblock copolymer forms micelles in solution, the structure of the solid polymer being preserved in the native solution because the polystyrene is in the glassy state. The equilibrium state is attained upon heating which again freezes in upon cooling to room temperature. The hydrodynamic radius of the micelles decreases by about 50% during this heating–cooling process. The concentration dependence of the self-diffusivity shows typical colloidlike behaviour, and it can be described by a Vogel–Fulcher–Tammann-like equation. No indications of crystallization at higher concentrations are observed in the micellar solution because the micellar sizes are slightly polydisperse. The self-diffusivity was measured up to the glasslike state, where in-cage- diffusion and dynamic heterogeneities could be detected. Received: 14 April 1999 Accepted in revised form: 14 June 1999  相似文献   

15.
In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A strategy is developed for the complementary use of dielectric and nuclear magnetic relaxation methods to elucidate the molecular dynamics in aqueous solutions of small hydrophilic molecules, and hence determine extents of hydration. The nuclear magnetic relaxation data, as well as characterizing the motional properties of various carbohydrate solutes, is used here to test alternative models for the resolution of the dielectric spectra into their component relaxation processes. This approach results in a much more confident analysis of solvent relaxation properties than has in the past been usual, to yield information relating to the extents of hydration of small sugars and the possible orientation-specific nature of this hydration. It is demonstrated that the dielectric relaxation of the sugar molecules themselves is unequivocally not due to the reorientation of the whole molecule and most likely is dominated by the rotation of hydrate side chain groups (hydroxyls and hydroxymethyl). In proton magnetic relaxation studies of glucose in D2O it is observed that one particular proton (H-1 in the -form only) is extremely susceptible to inter-molecular proton-proton interactions while the remaining protons are very effectively shielded. This observation is shown to be fully consistent with the conformational and hydration properties of glucose.  相似文献   

17.
The self-diffusion coefficients of toluene in polyisobutylene (PIB) solutions were determined using the pulsed field gradient nuclear magnetic resonance technique. The volume fraction of toluene in the polymer was varied from 0.045 up to 0.712 and the temperature was varied from 225 K up to 368 K. The concentration dependence of the data was interpreted using the Fujita free volume theory and the temperature dependence was interpreted with the WLF equation. These models describe separately the concentration and temperature dependencies of the toluene self-diffusion coefficients very well and the resulting free volume parameters are in good agreement with the ones extracted from the analysis of viscosity data on the same system. ©1995 John Wiley & Sons, Inc.  相似文献   

18.
This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 °C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known markers such as 5-hydroxymethylfurfural (5-HMF) as well as a range of other relevant compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. In addition, the multivariate analysis method of 2D correlation analysis was applied to the NMR data enabling the relevant compound variations to be confirmed and inter-compound correlations to be assessed, some reflecting common metabolic/chemical pathways and, therefore, offering improved insight into the chemical aspects of beer aging.  相似文献   

19.
High-resolution nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for obtaining chemical structure information. Its quantitative and noninvasive properties have led to its growing popularity as an analytical tool in many fields, including biology, chemistry, medicine, and food science. During transportation and storage, chemical reactions among the many nutrients lead to a loss of food quality. In these circumstances, portable NMR spectrometers can readily be used for food inspection and quality control. Because of the heterogeneous tissue distribution in food, a high-resolution NMR method is required for detailed food inspection. Therefore, in this study, we demonstrated the feasibility of using an intermolecular double-quantum coherence signal to obtain high-resolution metabolic profiles of several fruits, including grape, cantaloupe, tomato, and watermelon. The resulting high-resolution NMR spectra facilitate the identification of important metabolites, which can be used as biomarkers for food quality control. The method established here may be adapted for food inspection using portable NMR equipment.  相似文献   

20.
Multiple sclerosis (MS) is a nervous system disease that affects the fatty myelin sheaths around the axons of the brain and spinal cord, leading to demyelination and a broad range of signs and symptoms. MS can be difficult to diagnose because its signs and symptoms may be similar to other medical problems. To find out which metabolites in serum are effective for the diagnosis of MS, we utilized metabolic profiling using proton nuclear magnetic resonance spectroscopy (1H‐NMR). Random forest (RF) was used to classify the MS patients and healthy subjects. Atomic absorption spectroscopy was used to measure the serum levels of selenium. The results showed that the levels of selenium were lower in the MS group, when compared with the control group. RF was used to identify the metabolites that caused selenium changes in people with MS by building a correlation model between these metabolites and serum levels of selenium. For the external test set, the obtained classification model showed a 93% correct classification of MS and healthy subjects. The regression model of levels of selenium and metabolites showed the correlation (R2) value of 0.88 for the external test set. The results indicate the suitability of NMR as a screen for identifying MS patients and healthy subjects. A novel model with good prediction outcomes was constructed between serum levels of selenium and NMR data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号