首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effectiveness of hetero‐COSY, HETCOR, HMQC, and HSQC two‐dimensional NMR pulse sequences for detection of 19F–1H correlations by scalar coupling was evaluated on monofluorinated and polyfluorinated test compounds. All four of these sequences were effective in observing 1H–19F correlations, using either 19F or 1H as the observe nucleus. All four sequences were amenable, to some degree, to adjustment to observe larger or smaller couplings preferentially. A 1/2J echo filter was effectively applied to remove artifacts from 2JFF strong coupling. The HETCOR experiments afforded the best overall combination of sensitivity, resolution and selectivity for JHF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Through‐space 19F–15N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The 19F–15N coupling constants were measured at natural abundance using a spin‐state selective indirect‐detection pulse sequence. As 15N‐labelled proteins are routinely synthesized for NMR studies, through‐space 19F–15N couplings have the potential to probe the stereochemistry of these proteins by 19F labelling of some amino acids or can reveal the site of docking of fluorine‐containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Natural products often possess various spin systems consisting of a methine group directly bonded to a methyl group (e.g. –CHa–CHb(CH3)–CHc–). The methine proton Hb splits into a broadened multiplet by coupling with several vicinal protons, rendering analysis difficult of nJC–H with respect to Hb in the J‐resolved HMBC‐1. In purpose of the reliable and easy measurements of nJC–H and nJH–H in the aforesaid spin system, we have developed a new technique, named BASHD‐J‐resolved‐HMBC. This method incorporates band selective homo decoupled pulse and J‐scaling pulse into HMBC. In this method, high resolution cross peaks can be observed along the F1 axis by J‐scaling pulse, and band selective homo decoupled pulse simplified multiplet signals. Determinations of nJC–H and nJH–H of multiplet signals can easily be performed using the proposed pulse sequence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This work reports on the comprehensive calculation of the NMR one‐bond spin–spin coupling constants (SSCCs) involving carbon and tellurium, 1J(125Te,13C), in four representative compounds: Te(CH3)2, Te(CF3)2, Te(C?CH)2, and tellurophene. A high‐level computational treatment of 1J(125Te,13C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4‐component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium‐containing compounds, basis sets, and methods used for obtainig spin–spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium–carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of 1J(125Te,13C) reaching as much as almost 50% of the total value of 1J(125Te,13C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3–6% and 0–4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non‐relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The 1J(11B19F) spin–spin coupling of gaseous BF3 was observed in 11B NMR spectra as a function of density in a wide range of temperatures. Following the extrapolation of the measured values to the zero‐density limit, the coupling constant free from intermolecular effects 1J0(11B19F) was obtained for each temperature. In contrast to previous investigations, the final results indicate a nonlinear dependence of 1J0(11B19F) on temperature. In the corresponding ab initio calculations of spin–spin coupling constants performed at the coupled cluster singles and doubles (CCSD) level to obtain a reliable result for this coupling constant we had to take into account large vibrational corrections. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The spin‐forbidden reaction mechanism of Ta (4F, 5d36s2) with CH3CN, on two different potential surfaces (PESs) has been investigated at the B3LYP, MP2, and CCSD level of theory. Crossing points between the PESs are located using different methods, and possible spin inversion processes are discussed by means of spin‐orbit coupling calculations. As a result, the reaction system will change its spin multiplicities near this crossing seam, leading to a significant decrease in the barrier of 2‐4TS3 from 24.17 to 5.36 kcal/mol, which makes the reaction access to a lower energy pathway and accelerate the reaction rate. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen‐induced polarization (PHIP) is applied to enhance 19F MR signals of (perfluoro‐n‐hexyl)ethene and (perfluoro‐n‐hexyl)ethane. Unexpectedly, the end‐standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non‐intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and 19F–19F NOESY spectra, as well as 19F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first 19F MR images of hyperpolarized linear semifluorinated alkenes were recorded.  相似文献   

10.
The chemical shifts and several 19F–19F, 13C–19F and 1H–19F spin‐spin coupling constants (SSCSs) of eight 4,5,6,7‐tetraflurobenzazoles (three benzimidazoles, three benzimidazolinones and two indazoles) have been determined. The chemical shifts were discussed using gauge including atomic orbital‐density functional theory calculations taking into account solvent effects (polarizable continuum model) and, for the solid state, hydrogen bonds (clusters up to three molecules). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A number of most representative second order polarization propagator approach (SOPPA) based wavefunction methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), and density functional theory (DFT) based methods, B3LYP, PBE0, KT2, and KT3, have been benchmarked in the calculation of the one‐bond 29Si‐1H spin‐spin coupling constants in the series of halosilanes SiHnX4?n (X = F, Cl, Br, I), both at the non‐relativistic and full four‐parameter Dirac's relativistic levels taking into account vibrational corrections. At the non‐relativistic level, the wavefunction methods showed much better results as compared with those of DFT. At the DFT level, out of four tested functionals, the Perdew, Burke, and Ernzerhof's PBE0 showed best performance. Taking into account, relativistic effects and vibrational corrections noticeably improves wavefunction methods results, but generally worsens DFT results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Four‐component relativistic calculations of 77Se–13C spin–spin coupling constants have been performed in the series of selenium heterocycles and their parent open‐chain selenides. It has been found that relativistic effects play an essential role in the selenium–carbon coupling mechanism and could result in a contribution of as much as 15–25% of the total values of the one‐bond selenium–carbon spin‐spin coupling constants. In the overall contribution of the relativistic effects to the total values of 1J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin‐orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second‐order polarization propagator approach (CC2) with the four‐component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of 1J(Se,C). Solvent effects in the values of 1J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2–78.4) are next to negligible decreasing negative 1J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of 77Se–13C spin‐spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1–0.2‐Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Synthesis, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the mer ‐Trihalogeno‐tris‐Pyridine‐Osmium(III) Complexes mer‐[OsX3Py3], X = Cl, Br, I By reaction of the hexahalogenoosmates(IV) with pyridine and iso‐amylalcohol mer‐trihalogeno‐tris‐pyridine‐osmium(III) complexes are formed and purified by chromatography. X‐ray structure determinations on single crystals have been performed of mer‐[OsBr3Py3] (monoclinic, space group P21/n, a = 9.098(5), b = 12.864(5), c = 15.632(5) Å, β = 90.216(5)°, Z = 4) and mer‐[OsI3Py3] (monoclinic, space group P21/n, a = 9.0952(17), b = 13.461(4), c = 15.891(10), β = 91.569(5)°, Z = 4). The pyridine rings are twisted propeller‐like against the N3 meridional plane with mean angles of 49° (Cl), 46° (Br), 44° (I). Based on the molecular parameters of the X‐ray structure determinations and assuming C2 point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis. Due to the stronger trans influence of pyridine as compared with the halide ligands for N'–Os–X · axes significantly different valence force constants are observed in comparison with symmetrically coordinated octahedron axes: fd(OsCl) = 1.74, fd(OsCl·) = 1.49, fd(OsBr) = 1.43, fd(OsBr · ) = 1.18, fd(OsI) = 0.99, fd(OsI · ) = 0.96, fd(OsN) between 1.96 and 2.07 and fd(OsN') between 2.13 and 2.32 mdyn/Å.  相似文献   

14.
The first demonstrated example of 19F–15N long‐range heteronuclear shift correlation spectroscopy at natural abundance is reported. Because of the very large variation in the size of 2J(N,F) vs 3J(N,F) long‐range heteronuclear couplings, the utilization of one of the new accordion‐optimized long‐range heteronuclear shift correlations experiments is essential if all possible correlations are to be observed in a single experiment. A modified IMPEACH‐MBC pulse sequence was used in conjunction with an optimization range from 4 to 50 Hz to demonstrate the technique using a mixture of 2‐ and 3‐fluoropyridine, which had 2J(N,F) and 3J(N,F) long‐range couplings of ?52 and 3.6 Hz, respectively. Because of the size of the 2J(N,F) long‐range coupling constant, a J‐modulation of the long‐range correlation response is observed in the spectrum resulting in a ‘doublet’ in F1 due to amplitude modulation. The size of the ‘doublet’ is shown to be a function of the parameter selection (t1max,Tmax,Tmin and spectral width in F1). This behavior is similar to F1 ‘skew’ associated with long‐range correlation responses in ACCORD‐HMBC spectra which has been analyzed in detail previously. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
We present ab initio methods to determine the Dzyaloshinskii–Moriya (DM) parameter, which provides the anisotropic effects of noncollinear spin systems. For this purpose, we explore various general spin orbital (GSO) approaches, such as Hartree–Fock (HF), density functional theory (DFT), and configuration interaction (CI), with one‐electron spin–orbit coupling (SOC1). As examples, two simple D3h‐symmetric models, H3 and B(CH2)3, are examined. Implications of the computational results are discussed in relation to as isotropic and anisotropic interactions of molecular‐based magnets. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
Ab initio EOM‐CCSD calculations were performed to determine 19F,1H, 19F,15N and 1H,15N spin–spin coupling constants in model complexes FH–NH3 and FH–pyridine as a function of the F—H and F—N distances. The absolute value of 1J(F,H) decreases and that of 1hJ(H,N) increases rapidly along the proton‐transfer coordinate, even in the region of the proton‐shared F—H—N hydrogen bond. In contrast, 2hJ(F,N) remains essentially constant in this region. These results are consistent with the recently reported experimental NMR spectra of FH–collidine which show that 1hJ(H,N) increases and 1J(F,H) decreases, while 2hJ(F,N) remains constant as the temperature of the solution decreases. They suggest that the FH–collidine complex is stabilized by a proton‐shared hydrogen bond over the range of experimental temperatures investigated, being on the traditional side of quasi‐symmetric at high temperatures, and on the ion‐pair side at low temperatures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

18.
吡啶修饰的线性五核金属化合物[Ni5(μ-dmpzda)4(NCS)2][ dmpzda-H2=N,N’-Di(4-methyl pyrydin-2-yl)pyrazine-2,6-diamine]被合成并表征,其电化学和磁性被报告。 化合物含有接近180º的 Ni-Ni-Ni角,末端含有两个轴配体的Ni5 线性链。这个五核线性金属链被四个顺式的dmpzda2-配体螺旋包裹。化合物中存在两种类型的Ni-Ni键长:末端连接有轴配体的Ni-Ni键长被配体影响,其键长为2.3821 Å;内部的Ni-Ni距离比较短,为2.2959 Å。两末端的Ni(II)离子由于连接轴配体构成四方锥形(NiN4NCS)并存在较长的Ni-N 键长(2.103 Å),这个键长符合高自旋Ni(II)构型。内部的三个Ni-N 距离为1.886-1.906 Å,这样构成正方形平面(NiN4)并呈低自旋的顺磁构型。化合物显示了同[Ni5(μ-tpda)4(NCS)2]类似的磁性,即在化合物中两末端Ni(II)仍存在反铁磁性的作用。  相似文献   

19.
MP2/aug′‐cc‐pVTZ calculations were performed to investigate boron as an electron‐pair donor in halogen‐bonded complexes (CO)2(HB):ClX and (N2)2(HB):ClX, for X=F, Cl, OH, NC, CN, CCH, CH3, and H. Equilibrium halogen‐bonded complexes with boron as the electron‐pair donor are found on all of the potential surfaces, except for (CO)2(HB):ClCH3 and (N2)2(HB):ClF. The majority of these complexes are stabilized by traditional halogen bonds, except for (CO)2(HB):ClF, (CO)2(HB):ClCl, (N2)2(HB):ClCl, and (N2)2(HB):ClOH, which are stabilized by chlorine‐shared halogen bonds. These complexes have increased binding energies and shorter B?Cl distances. Charge transfer stabilizes all complexes and occurs from the B lone pair to the σ* Cl?A orbital of ClX, in which A is the atom of X directly bonded to Cl. A second reduced charge‐transfer interaction occurs in (CO)2(HB):ClX complexes from the Cl lone pair to the π* C≡O orbitals. Equation‐of‐motion coupled cluster singles and doubles (EOM‐CCSD) spin–spin coupling constants, 1xJ(B‐Cl), across the halogen bonds are also indicative of the changing nature of this bond. 1xJ(B‐Cl) values for both series of complexes are positive at long distances, increase as the distance decreases, and then decrease as the halogen bonds change from traditional to chlorine‐shared bonds, and begin to approach the values for the covalent bonds in the corresponding ions [(CO)2(HB)?Cl]+ and [(N2)2(HB)?Cl]+. Changes in 11B chemical shieldings upon complexation correlate with changes in the charges on B.  相似文献   

20.
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号