首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic nuclear polarization (DNP) magic‐angle spinning (MAS) solid‐state NMR (ssNMR) spectroscopy has the potential to enhance NMR signals by orders of magnitude and to enable NMR characterization of proteins which are inherently dilute, such as membrane proteins. In this work spin‐labeled lipid molecules (SL‐lipids), when used as polarizing agents, lead to large and relatively homogeneous DNP enhancements throughout the lipid bilayer and to an embedded lung surfactant mimetic peptide, KL4. Specifically, DNP MAS ssNMR experiments at 600 MHz/395 GHz on KL4 reconstituted in liposomes containing SL‐lipids reveal DNP enhancement values over two times larger for KL4 compared to liposome suspensions containing the biradical TOTAPOL. These findings suggest an alternative sample preparation strategy for DNP MAS ssNMR studies of lipid membranes and integral membrane proteins.  相似文献   

2.
Recent advances in solid‐state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high‐power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTA) was synthesized and labeled with 13C (i.e., 13C‐TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid‐state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of 13C‐TmDOTA, and the 13C chemical shift of the complex exhibited a large‐temperature dependence. The results demonstrated that 13C‐TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by 1H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, 13C‐TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Characterization of the Protons in Polycrystalline Paratungstates using 1H MAS NMR Investigations 1H MAS NMR experiments are used to characterize the non‐acid protons of the anions in polycrystalline paratungstates by means of the measured isotropic chemical shift values. The investigation of various hydrates of ammonium paratungstate allows a direct proof of protons in NH4 ions and in water molecules while protons of the anions are not detectable. However, for both the potassium and the sodium paratungstates 1H MAS NMR investigations detected the protons of water molecules and the non‐acid protons of the paratungstate anions. Additional 1H broad‐line NMR experiments at 173 K support the interpretation of the results obtained by the 1H MAS NMR investigations. For the NMR signal of the non‐acid protons of the paratungstate anion in the 1H MAS NMR spectra of the potassium salt line‐splitting appears. This refers to the existence of two nonidentical positions of the protons in the crystal lattice and is in agreement with the results of the X‐ray structural analysis.  相似文献   

4.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

5.
We employ a combination of (13)C/(15)N magic angle spinning (MAS) NMR and (2)H NMR to study the structural and functional consequences of different membrane environments on VDAC1 and, conversely, the effect of VDAC1 on the structure of the lipid bilayer. MAS spectra reveal a well-structured VDAC1 in 2D crystals of dimyristoylphosphatidylcholine (DMPC) and diphytanoylphosphatidylcholine (DPhPC), and their temperature dependence suggests that the VDAC structure does not change conformation above and below the lipid phase transition temperature. The same data show that the N-terminus remains structured at both low and high temperatures. Importantly, functional studies based on electrophysiological measurements on these same samples show fully functional channels, even without the presence of Triton X-100 that has been found necessary for in vitro-refolded channels. (2)H solid-state NMR and differential scanning calorimetry were used to investigate the dynamics and phase behavior of the lipids within the VDAC1 2D crystals. (2)H NMR spectra indicate that the presence of protein in DMPC results in a broad lipid phase transition that is shifted from 19 to ~27 °C and show the existence of different lipid populations, consistent with the presence of both annular and bulk lipids in the functionally and structurally homogeneous samples.  相似文献   

6.
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy‐polyethyleneglycol‐monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid‐state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13C{1H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton‐phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A boron‐modified ethynylhydridopolycarbosilane (B‐EHPCS) was successfully prepared via the hydroboration reaction of ethynylhydridopolycarbosilane (EHPCS) with 9‐borabicyclo‐[3.3.1]nonane (9‐BBN). The as‐synthesized B‐EHPCS with a branched structure was characterized by means of gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). The structural evolution of ceramic conversion of B‐EHPCS was investigated by solid‐state NMR. The 13C magic angle spinning (MAS) NMR results indicated that the C?C and C?C groups of B‐EHPCS take part in the hydrosilation cross‐linking at a relatively low temperature (170°C). According to the 29Si MAS NMR analysis, the CSiH3 end groups are most reactive hydride functionality involved in the hydrosilation cross‐linking. With increasing curing temperature, the C2SiH2 and CSiH3 units are completely consumed, while C3SiH units remain even after curing at 600°C. The TGA results show the 1200°C ceramic yield of B‐EHPCS reaches 86%, which is 10% higher than that of the parent EHPCS (76%). At high temperatures, the introduction of <1 wt% boron significantly inhibits silicon carbide (SiC) crystallization. The 1800°C ceramics derived from B‐EHPCS are found to be significantly denser than that from EHPCS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Phenyltin compounds are known to be biologically active and, whan widely spread, are potentially hazardous. As their chemical structure suggests, they interact with the lipid fraction of the cell membrane. Their effect on the model phosphatidylcholine/cholesterol bilayer has been studied using fluorescence and 1H NMR techniques. The change in the fluorescein‐PE fluorescence intensity indicates the amount of charge added by phenyltin compounds to the membrane surface. Although the presence of cholesterol alone does not alter membrane interface properties measured with fluorescein‐PE, 1H NMR measurements show that lipid mobility is altered throughout the hydrophobic core of the membrane. Cholesterol in the phosphatidylcholine bilayer does not alter tetraphenyltin interaction with the membrane, though the effect of diphenyltin dichloride, penetrating deeply into the hydrophobic core of the membrane, is reduced when the amount of cholesterol in the membrane is increased, suggesting decreased compound adsorption. Triphenyltin chloride has a qualitatively different effect on the lipid bilayer, when observed using this fluorescence technique. The adsorption of triphenyltin onto the phosphatidylcholine/cholesterol membrane induces a lateral phase separation of membrane components. Since triphenyltin chloride is known to be adsorbed onto the interface of the lipid bilayer, this separation mechanism must originate in this region and does not seem to be electrostatic in origin. 1H NMR measurements have confirmed the observation that these two active phenyltin compounds interact with the phosphatidylcholine/cholesterol membrane differently, disrupting different regions of the bilayer to a different degree. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The influence of some amphiphilic (diethyl, dipropyl, and dibutyl) esters of (1,1-dimethyl-3-oxobutyl)phosphonic acid with the regularly changing number of CH2 groups in the hydrocarbon (hydrophobic) moiety on the lateral diffusion of dioleoyl phosphatidylcholine lipid and transmembrane diffusion of water in the oriented multibilayer system was studied by 1H pulsed field gradient NMR at phosphonate concentrations up to 30 mol %. The shape of the 31P NMR spectra and the dependence of the shape of the 1H NMR spectra on the bilayer orientation suggest that the presence of phosphonates does not affect the phase state of the system. The lamellar liquid crystalline phase remains unchanged, and phosphonate molecules become incorporated into the bilayer and have the same orientation as phospholipid molecules. The presence of phosphonates in the lipid bilayer increases the coefficients of lipid lateral diffusion and water diffusion through bilayers. This effect depends monotonically on the number of CH2 groups in the phosphonate molecule. The most probable place for the incorporation of amphiphilic phosphonate molecules is the hydrophilic/hydrophobic interphase region of the bilayer. The molecules incorporated into the interphase disorder the bilayer and increase lateral diffusion of lipids and bilayer permeability compared with the ester-free bilayer. When the number of CH2 groups in the ester molecule increases from diethyl to dibutyl phosphonate, the arrangement of lipid hydrocarbon tails becomes more ordered. This decreases the lipid lateral diffusion coefficient and bilayer permeability to water molecules.  相似文献   

11.
Small unilamellar vesicles (SUVs) of phospholipids are often used as a membrane model system for studying the interaction of molecules. When using NMR under the standard liquid‐state conditions, SUV phospholipid proton spectra can be recorded, exhibiting sharp signals. This is not only because of the fast vesicular tumbling but also because of the combination of this tumbling with the individual motion of the lipids inside the bilayer. This appears evident because addition of cholesterol is responsible of broader resonances because of the slowing down of the lipid motion. On the other hand, no 1H signal is detected for cholesterol in the bilayer. This lack of detection of the inserted molecules explains why generally SUVs are not considered as a good model for NMR studies under the standard liquid‐state conditions. Here, we use two other sterols in order to demonstrate that an increase of the molecular mobility inside the bilayer could allow the detection of their proton resonances. For desmosterol and lanosterol, which show higher mobility inside the bilayer, with increasing lateral diffusion rates, 1H sterol signals are detected in contrast to cholesterol. For the fast diffusing lanosterol, no significant improvement in detection is observed using deuterated lipids, demonstrating that homonuclear dipolar coupling is fully averaged out. Furthermore, in the case of low mobility such as for cholesterol, the use of a fast magic angle spinning probe is shown to be efficient to recover the full proton spectrum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

13.
This paper presents the high‐resolution 13C and 15N cross‐polarization magic angle spinning (CP/MAS) NMR spectra of three natural melanin solids: Sepia officinalis melanin, Sepia officinalis melanin free acid (MFA) and Human hair melanin. The functional group characterization of Human hair melanin by NMR is the first to date and the 13C CP/MAS NMR spectra reported here show improved resolution of chemically inequivalent sites. The observed spectral regions of the solid melanin samples can be assigned to the postulated structural unit of the polymer chain of Sepia MFA derived from solution‐state NMR studies. To assist in the assignment of functional groups in the spectra, the solid‐state CP/MAS NMR spectra are compared with high‐resolution 13C and 15N CP/MAS spectra of four model compounds, L ‐dopa, dopamine, 2‐methoxycarbonyl‐3‐ethoxycarbonyl‐4‐methylpyrrole and ethyl 5,6‐dimethoxyindole‐2‐carboxylate. To aid further in the assignment of protonated and non‐protonated carbon atoms, CP contact time dependence and non‐quaternary carbon suppression (NQS) experiments were performed on the melanin samples. The 15N CP/MAS spectra of the melanin samples confirm the presence of indole and pyrrole units in the melanin polymer chain. The NMR peaks observed in all of the melanin samples are relatively broad, presumably owing to the presence of free radicals. Electron spin resonance (ESR) data shows that all three melanin samples contain localized free radicals (g = 2.007), with the Sepia melanin containing a 10‐fold higher free radical density than Human hair melanin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.  相似文献   

15.
Magic‐angle spinning dynamic nuclear polarization (MAS‐DNP) has been proven to be a powerful technique to enhance the sensitivity of solid‐state NMR (SSNMR) in a wide range of systems. Here, we show that DNP can be used to polarize lipids using a lipid‐anchored polarizing agent. More specifically, we introduce a C16‐functionalized biradical, which allows localization of the polarizing agents in the lipid bilayer and DNP experiments to be performed in the absence of excess cryo‐protectant molecules (glycerol, dimethyl sulfoxide, etc.). This constitutes another original example of the matrix‐free DNP approach that we recently introduced.  相似文献   

16.
The dynamics of poly(dimethylsiloxane) in its inclusion compound with γ‐cyclodextrin are elucidated using modern fast‐MAS solid‐state NMR techniques. Measurements of methyl 1H–1H and 1H–13C dipolar coupling constants indicate that the polymer undergoes a uniform motion, rendering all methyl groups equivalent. The dynamics of the Si—C bond is characterized by either a dynamic order parameter of S = 0.72, or, assuming a stably rotating helical structure, an inclination angle of 73° relative to the rotation axis.  相似文献   

17.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

18.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

19.
Polyurea, which was synthesized from 4,4′‐diphenylmethane diisocyanate, Jeffamine‐ED2001 (weight‐average molecular weight: 2000), and 3,5‐diaminobanzoic acid (DABA) were doped with lithium perchlorate (LiClO4) as the polyelectrolyte. Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and 7Li magic‐angle spinning (MAS) solid‐state NMR were used to monitor changes in the morphology of polyurea electrolytes corresponding to the concentration of LiClO4 dopants. DSC showed the glass‐transition temperature of the hard and soft segments increases with salt concentration. FTIR indicated the carboxylic group of DABA coordinates with the Li+ ion, and the ordered hydrogen‐bonded urea carbonyl groups are destroyed when the salt concentration exceeds 0.5 mmole of LiClO4 (gPUrea)?1. The 7Li MAS solid‐state NMR investigation of the polyurea electrolytes revealed the presence of two Li+ environments at lower temperature. Impedance spectroscopy measurements showed that the conductivity behavior followed the Arrhenius equation, and the maximum conductivity occurred when the crystalline structure of polyurea was disrupted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4007–4016, 2003  相似文献   

20.
Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号