首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The proton nuclear magnetic resonance (NMR) spectra of propane‐1,3‐diol, 2‐methylpropane‐1,3‐diol, 2,2‐dimethylpropane‐1,3‐diol, butane‐1,3‐diol, 3‐methylbutane‐1,3‐diol, pentane‐2,4‐diols (dl and meso), 2‐methylpentane‐2,4‐diol and cyclohexane‐1,3‐diols (cis and trans) in benzene have been analysed. The conformer distribution and the NMR shifts of these diols have been computed on the basis of density functional theory, the solvent being included by means of the integral equation formalism phase continuum model (IEFPCM) implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311 + G(d,p) level, and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311 + G(d,p) geometry and the cc‐pVTZ basis set. Vicinal coupling constants for 1,2‐ and 1,3‐diols are rationalised in terms of relative conformer populations and geometries. The NMR shifts of hydrogen‐bonded protons in individual conformers of alkane‐1,n‐diols show a very rough correlation with the OH?OH distances. The computed overall NMR shifts for CH protons in 1,2‐ and 1,3‐diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01. Some values for nonequivalent methylene protons in 1,3‐diols are reversed, calculation giving enhanced values for the proton anti to the C? OH bonds. Errors in the NMR shifts computed for the OH protons of nonsymmetrical diols appear to be related to relative populations of conformers where one or other of the OH groups is the donor. Some results based on the second‐order Møller–Plesset approach, the Becke three‐parameter Lee‐Yang‐Parr method and on the IEFPCM solvation model implemented in Gaussian 03 are included. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The proton nuclear magnetic resonance (NMR) spectra of butane‐1,4‐diol, pentane‐1,4‐diol, (S,S)‐hexane‐2,5‐diol, 2,5‐dimethylhexane‐2,5‐diol and cyclohexane‐1,4‐diols (cis and trans) in benzene and some other solvents have been analysed. The conformer distribution and the NMR shifts of these diols in benzene have been computed on the basis of the density functional theory, the solvent being included by means of the integral‐equation‐formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311+G(d,p) level and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311+G(d,p) geometry and the cc‐pVTZ basis set. Vicinal three‐bond coupling constants for the acyclic diols are calculated from the relative conformer populations, the geometries and generalized Karplus equations developed by Altona's group; these correlate well with the experimental values. The solvent dependence of coupling constants for butane‐1,4‐diol is attributed to conformational change. Coupling constants for the rigid cyclohexane‐1,4‐diols do not change with solvent and are readily explained in terms of their geometries. The NMR shifts of hydrogen‐bonded protons in individual conformers of alkane‐1,n‐diols show a very rough correlation with the OH···OH distances. The computed overall NMR shifts for CH protons in 1,2‐diols, 1,3‐diols and 1,4‐diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01; those for OH protons correlate less well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The proton NMR spectra of several 1,2‐diols in benzene have been analysed so as to associate each magnetically nonequivalent proton with its chemical shift. The shifts and coupling constants of the OH and methylene protons of ethane‐1,2‐diol have been determined in a wide range of solvents. The conformer distribution and the proton NMR shifts of these 1,2‐diols in benzene have been computed on the basis of density functional theory. The solvent is included using the integral–equation–formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies for all stable conformers are calculated at the Perdew, Burke and Enzerhof (PBE)0/6‐311 + G(d,p) level, and shifts are calculated using the gauge‐including atomic orbital method with the PBE0/6‐311 + G(d,p) geometry but using the cc‐pVTZ basis set. Previous calculations on ethane‐1,2‐diol and propane‐1,2‐diol have been corrected and extended. New calculations on tert‐butylethane‐1,2‐diol, phenylethane‐1,2‐diol, butane‐2,3‐diols (dl and meso) and cyclohexane‐1,2‐diols (cis and trans) are presented. Overall, the computed NMR shifts are in good agreement with experimental values for the OH protons but remain systematically high for CH protons. Some results based on the Gaussian 03 solvation model are included for comparison. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Density functional theory calculations are used to compute proton nuclear magnetic resonance (NMR) chemical shifts, interatomic distances, atom–atom interaction energies, and atomic charges for partial structures and conformers of α‐D‐glucopyranose, β‐D‐glucopyranose, and α‐D‐galactopyranose built up by introducing OH groups into 2‐methyltetrahydropyran stepwisely. For the counterclockwise conformers, the most marked effects on the NMR shift and the charge on the OH1 proton are produced by OH2, those of OH3 and OH4 being somewhat smaller. This argues for a diminishing cooperative effect. The effect of OH6 depends on the configuration of the hydroxymethyl group and the position, axial or equatorial, of OH4, which controls hydrogen bonding in the 1,3‐diol motif. Variations in the interaction energies reveal that a “new” hydrogen bond is sometimes formed at the expense of a preexisting one, probably due to geometrical constraints. Whereas previous work showed that complexing a conformer with pyridine affects only the nearest neighbour, successive OH groups increase the interaction energy of the N⋯H1 hydrogen bond and reduce its length. Analogous results are obtained for the clockwise conformers. The interaction energies for C―H⋯OH hydrogen bonding between axial CH protons and OH groups in certain conformers are much smaller than for O―H⋯OH bonds but they are largely covalent, whereas those of the latter are predominantly coulombic. These interactions are modified by complexation with pyridine in the same way as O―H⋯OH interactions: the computed NMR shifts of the CH protons increase, the atom–atom distances are shorter, and interaction energies are enhanced.  相似文献   

5.
Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in hydrogen bonding solvents have been computed on the basis of density functional theory by applying the gauge‐including atomic orbital method to geometry‐optimized alcohol/solvent complexes. The OH proton shifts and hydrogen bond distances for methanol or ethanol complexed with pyridine depend very much on the functional employed and very little on the basis set, provided it is sufficiently large to give the correct quasi‐linear hydrogen bond geometry. The CH proton shifts are insensitive to both the functional and the basis set. NMR shifts for all protons in several alcohol/pyridine complexes are calculated at the Perdew, Burke and Ernzerhof PBE0/cc‐pVTZ//PBE0/6‐311 + G(d,p) level in the gas phase. The results correlate with the shifts for the pyridine‐complexed alcohols, determined by analysing data from the NMR titration of alcohols against pyridine. More pragmatically, computed shifts for a wider range of alcohols correlate with experimental shifts in neat pyridine. Shifts for alcohols in dimethylsulfoxide, based on the corresponding complexes in the gas phase, correlate well with the experimental values, but the overall root mean square difference is high (0.23 ppm), shifts for the OH, CH OH and other CH protons being systematically overestimated, by averages of 0.42, 0.21 and 0.06 ppm, respectively. If the computed shifts are corrected accordingly, a very good correlation is obtained with a gradient of 1.00 ± 0.01, an intercept of 0.00 ± 0.02 ppm and a root mean square difference of 0.09 ppm. This is a modest improvement on the result of applying the CHARGE programme to a slightly different set of alcohols. Some alcohol complexes with acetone and acetonitrile were investigated both in the gas phase and in a continuum of the relevant solvent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The idea that hydrogen bond cooperativity is responsible for the structure and reactivity of carbohydrates is examined. Density functional theory and gauge‐including atomic orbital calculations on the known conformers of the α and β anomers of d ‐glucopyranose in the gas phase are used to compute proton NMR chemical shifts and interatomic distances, which are taken as criteria for probing intramolecular interactions. Atom–atom interaction energies are calculated by the interacting quantum atoms approach in the framework of the quantum theory of atoms in molecules. Association of OH1 in the counterclockwise conformers with a strong acceptor, pyridine, is accompanied by cooperative participation from OH2, but there is no significant change in the bonding of the two following 1,2‐diol motifs. The OH6 ... O5 (G?g+/cc/t and G+g?/cc/t conformers) or OH6 ... O4 (Tg+/cc/t conformer) distance is reduced, and the OH6 proton is slightly deshielded. In the latter case, this shortening and the associated increase in the OH6–O4 interaction energy may be interpreted as a small cooperative effect, but intermolecular interaction energies are practically the same for all three conformers. In most of the pyridine complexes, one ortho proton interacts with the endocyclic oxygen O5. Analogous results are obtained when the clockwise conformer, G?g+/cl/g?, detected for the α anomer, and a hypothetical conformer, Tt/cl/g?, are complexed with pyridine through OH6. Generally, the cooperative effect does not go beyond the first two OH groups of a chain. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral‐equation‐formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311+G(d,p) level, and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311+G(d,p) geometry and the cc‐pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, ?0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re‐examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi‐standard approach gives a similar result. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Proton nuclear magnetic resonance chemical shifts and atom–atom interaction energies for alkanepolyols with 1,2-diol and 1,3-diol repeat units, and for their 1:1 pyridine complexes, are computed by density functional theory calculations. In the 1,3-polyols, based on a tG'Gg' repeat unit, the only important intramolecular hydrogen bonding interactions are O─HOH. By quantum theory of atoms in molecules analysis of the electron density, unstable bond and ring critical points are found for such interactions in 1,2-polyols with tG'g repeat units, from butane-1,2,3,4-tetrol onwards and in their pyridine complexes from propane-1,2,3-triol onwards. Several features (OH proton shifts and charges, and interaction energies computed by the interacting quantum atoms approach) are used to monitor the dependence of cooperativity on chain length: This is much less regular in 1,2-polyols than in 1,3-polyols and by most criteria has a higher damping factor. Well defined C─HOH interactions are found in butane-1,2,3,4-tetrol and higher members of the 1,2-polyol series, as well as in their pyridine complexes: There is no evidence for cooperativity with O─HOH bonding. For the 1,2-polyols, there is a tenuous empirical relationship between the existence of a bond critical point for O─HOH hydrogen bonding and the interaction energies of competing exchange channels, but the primary/secondary ratio is always less than unity.  相似文献   

9.
A series of novel fatty acid‐based diols were designed and synthesized from sunflower and ricin oils using optimized chemical reactions and purifications. These diols were categorized in two different types: (i) fatty acid‐based monoester containing diols (FAmE‐1 to FAmE‐6) and (ii) fatty acid‐based diester containing diols (FAdE‐1 to FAdE‐8). Their synthesis involved a series of reactions such as transesterification, epoxidation, ring opening of epoxide, and thiol‐ene additions. Analyses of these new fatty acid‐based diols were performed by HPLC/GC and NMR spectroscopy. The latter were then demonstrated as polyurethane (PU) precursors in the bulk polymerization with isophorone diisocyanate in the presence of dibutyl tin dilaurate as a catalyst. The effects of the diol nature and purity on the PU synthesis and properties were investigated. The structural characterization of the different PUs was carried out by means of FTIR, 1H NMR, and 1H DOSY NMR spectroscopy. The thermomechanical and rheological properties of these new PUs were found dependent on the chemical structure and purity of the diol building block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A series of telechelic oligo[(R,S)‐3‐hydroxybutyrate]‐diols (PHB‐diols) was synthesized from ethyl (R,S)‐3‐hydroxybutyrate (ethyl (HB)) and four different aliphatic diols, namely, 1,4‐butanediol, 1,6‐hexanediol, 1,8‐octanediol and 1,10‐decanediol by transesterification and condensation in bulk. The structures of the synthesized oligomers were confirmed by 1H NMR spectroscopy and MALDI‐TOF mass spectroscopy. The use of 1,4‐butanediol results in an oligoester with hydroxyl functionality of approximately 2. In the case of the higher aliphatic diols, the number average functionalities were found to be lower than 2. These differences were ascribed to side reactions which occur during polymerization, yielding unreactive end groups. Other novel families of biodegradable poly(ester‐urethane)s were synthesized either from PHB‐diol alone, or PHB‐diol mixed with poly(ε‐caprolactone)‐diol (PCL‐diol), poly(butylene adipate)‐diol (PBA‐diol) or poly(diethylene glycol adipate)‐diol (PDEGA‐diol). In each case, 1,6‐hexamethylene diisocyanate was used as a nontoxic connecting agent. The homopolymers prepared from PCL‐diol, PBA‐diol and PDEGA‐diol were also synthesized for the sake of comparison. All the prepared copolymers possess high molecular weight with glass transition temperature (Tg) values varying from –54 to –23°C. Some of the prepared copoly(ester‐urethane)s are partially crystalline with melting temperatures (Tm's) varying from 37 to 56°C.  相似文献   

11.
郭文生  徐赫男  郭放  佟健 《中国化学》2005,23(3):272-274
设计、合成了两种蝶形主体分子:2,5-二(三苯甲基)对苯二酚1,2,5-二(二苯甲基)对苯二酚2.1和2可与许多有机小分子形成配位包合物。用IR表征了主体分子1和2 的包结物, 用1H NMR测定了主客体分子的摩尔比:1•DMF (1:2),1•DMSO (1:2),1 •吡啶 (1:2),1•环戊酮 (2:3)和2•DMF 1:2),2•DMSO (1:2),2 •THF (1:1),2•苯甲醛(1:2),2•苯乙酮 (1:2),2•2,5-己二酮 (1:1),2 •N-甲基-2-吡咯烷酮 (1:3)。单晶X-射线衍射分析了包结物2·苯甲醛的晶体结构,在分子间氢键的相互作用下晶体得以稳定。  相似文献   

12.
A deep-cavity ‘mixed’ octahomotetraoxacalix[2]naphthalene[2]pyridine macrocycle has been synthesised and its single-crystal X-ray structure has been determined. Molecular modeling studies suggested that this macrocycle could be an effective host for guest aromatic diol(s) similar to Wang's methylazacalixpyridines. Binding constants were determined using 1H NMR chemical shifts changes and comparisons were made between the diols which were tested.  相似文献   

13.
Cyclodehydration of 1,4‐butanediol and 2‐butene‐1,4‐diol to the corresponding cyclic ethers was studied using the AM1 semiempirical method. It was established that the cyclodehydration reaction of 1,4‐butenediol and 2‐butene‐1,4‐diol is effected by converting of semicyclic conformers in the presence of acidic and basic active centers. The calculation results indicate that a concerted mechanism is probably realized in the cyclodehydration of both diols, while the sequences of the predicted steps in the cyclodehydration reaction for 1,4‐butanediol and 2‐butene‐1,4‐diol are different. The calculated reaction heats for 1,4‐butanediol and 2‐butene‐1,4‐diol transformations are ?184.029 and ?308.746 kcal/mol, respectively. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
Isosorbide and equimolar amounts of various diols were polycondensed with diphosgene and pyridine. Bisphenol A, 3,3′‐dimethyl bisphenol A, bisphenol C, 1,3‐bis(4‐hydroxybenzoyloxy)propane, and 1,4‐cyclohexane diol were used as comonomers. The compositions were determined by 1H NMR spectroscopy; the random sequences were characterized by 13C NMR spectroscopy. For the high‐molar‐mass copolycarbonates of bisphenol A, 3,3′‐dimethyl bisphenol A, and bisphenol C, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry proved that the chain growth was mainly limited by cyclization. Copolycarbonates with alternating sequences were obtained by the polycondensation of bisphenol A with isosorbide bischloroformiate or from isosorbide and bisphenol A bischloroformiate. In these cases, large amounts of cyclic oligo‐ and polycarbonates were also formed. The glass‐transition temperatures were determined by differential scanning calorimetry measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3616–3628, 2006  相似文献   

15.
The 1H and 13C NMR spectra of ethylidene derivatives of simple diols and of carbohydrates were measured to determine whether NMR parameters could be found which could be related to structure. Four NMR parameters were considered; the chemical shifts of the acetal proton and carbon, the 2JC,H value between the acetal proton and methyl carbon and the 1JC,H value of the acetal carbon. The values,.of these parameters were all somewhat related to ring-size; the 2JC,H value was most closely related. The sign of 2JC,H was shown to be positive for 2-methy l-l,3-dioxolane and Z-methy l-l,3-dioxane by means of selective population transfer experiments. Comparison of the 13C NMR chemical shifts of the acetal with the parent diol was found to give information about acetal location.  相似文献   

16.
In this study, biobased furan dicarboxylate polyesters have been prepared using 2,5‐furandicarboxylic acid (FDCA) and diols with high number of methylene groups (long‐chain diols), namely, 8, 9, 10, and 12. Because of the high boiling points of these diols, a modified procedure of the well‐known melt polycondensation was applied in this work. According to this, the dimethyl ester of FDCA (DMFD) reacted in the first transesterification stage with the corresponding diols forming bis‐hydroxy‐alkylene furan dicarboxylates (BHFD). In the second stage, the BHFD reacted with DMFD again at temperatures of 150–170 °C (for 4–5 h), and in the final stage, the temperature was raised to 210–230 °C (vacuum was applied for 2–3 h). The molecular weight of the polyesters and the content of oligomers, as was verified by gel permeation chromatography analysis, depend on the polycondensation time and temperature. The chemical structure of the polyesters was verified from 1H NMR spectroscopy. All the polymers were found to be semicrystalline, with melting temperatures from 69 to 140 °C depending on the diol used. In addition, the mechanical properties also varied with the type of diol. The higher values were observed for poly(octylene 2,5‐furanoate), whereas the lowest values were observed for poly(dodecylene 2,5‐furanoate) with the higher number of methylene groups in its repeating unit. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2617–2632  相似文献   

17.
We report on a detailed NMR spectroscopic study of the catalyst‐substrate interaction of a highly enantioselective oligopeptide catalyst that is used for the kinetic resolution of trans‐cycloalkane‐1,2‐diols via monoacylation. The extraordinary selectivity has been rationalized by molecular dynamics as well as density functional theory (DFT) computations. Herein we describe the conformational analysis of the organocatalyst studied by a combination of nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC)‐based methods that resulted in an ensemble of four final conformers. To corroborate the proposed mechanism, we also investigated the catalyst in mixtures with both trans‐cyclohexane‐1,2‐diol enantiomers separately, using advanced NMR methods such as T1 relaxation time and diffusion‐ordered spectroscopy (DOSY) measurements to probe molecular aggregation. We determined intramolecular distance changes within the catalyst after diol addition from quantitative NOE data. Finally, we developed a pure shift EASY ROESY experiment using PSYCHE homodecoupling to directly observe intermolecular NOE contacts between the trans‐1,2‐diol and the cyclohexyl moiety of the catalyst hidden by spectral overlap in conventional spectra. All experimental NMR data support the results proposed by earlier computations including the proposed key role of dispersion interaction.  相似文献   

18.
The NMR spectra of solutions containing partially deuterated anhydrous hypophosphorous acid (H2POOH) and its complexes with organic bases as proton acceptors were obtained in CD2Cl2 in the temperature range 183–253 K. Under these conditions, the state of slow exchange is achieved, as evidenced by the fine spin-spin and isotope (H/D) structure of the NMR signals. The formation and strengthening of the hydrogen bond by the OH group result in strong shielding of the 31P nucleus and decrease the spin-spin coupling constants of nuclei in the PH2 group. Saturation of these effects occurs in going from proton to base. Direct and long-range effects of H/D substitution in the OH and PH groups on the H, 31P, and 15N chemical shifts in complexes were measured. The signs of these effects were explained in terms of a simplified model of dynamic interaction of covalent and hydrogen bonds. The kinetics of the interconversion of a cyclic H2POOH dimer and a zwitterionic complex with pyridine were studied by dynamic 1H NMR, and thermodynamic and kinetic parameters of the process were measured. A hypothetical mechanism of the reaction with the transition state close to an open-chain dimer with one hydrogen bond was proposed.  相似文献   

19.
The etherate of (Ph2SiO)8[Al(O)OH]4 can be transformed into the pyrazine adduct (Ph2SiO)8[Al(O)OH]4 · 3N(C2H2)2N ( 1 ), the ethyl acetate adduct (Ph2SiO)8[Al(O)OH]4 · 3H3C-C(O)OC2H5 ( 2 ), the 1,6-hexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 2HO–CH2(CH2)4CH2–OH ( 3 ) and the 1,4-cyclohexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 4HO–CH(CH2CH2)2CH–OH ( 4 ). In all compounds the OH groups of the starting material bind to the bases through O–H ··· N ( 1 ) or O–H ··· O hydrogen bonds ( 2 , 3 , 4 ) as found from single-crystal X-ray diffraction analyses. Whereas in 1 only three of the central OH groups bind to the pyrazines, in 2 two of them bind to the same carbonyl oxygen atom of the ethyl acetate resulting in an unprecedented O–H ··· O ··· H–O double hydrogen bridge. The hexane diol adduct 3 in the crystal forms a one-dimensional coordination polymer with an intramolecularly to two OH groups grafted hexane diol loop, while the second hexane diol is connecting intermolecularly. In the cyclohexane diol adduct 4 all OH groups of the central Al4(OH)4 ring bind to different diols, leaving one alcohol group per diol uncoordinated. These “free” OH groups form an (O-H ··· )4 assembly creating a three-dimensional overall structure. When reacting with (Ph2SiO)8[Al(O)OH]4 lysine loses water, turns into the cyclic 3-amino-2-azepanone, and transforms through chelation of one of the aluminum atoms the starting material into a new polycycle. The isolated compound has the composition (Ph2SiO)12[Al(O)OH]4[Al2O3]2 · 4 C6H12N2O · 6(CH2)4O ( 5 ).  相似文献   

20.
Three mononuclear vanadium complexes containing aromatic 1, 2‐diols (catechol and naphthalene‐2, 3‐diol) ligands,[VIVO(cat)2][1, 3‐HPDA]2 · CH3OH ( 1 ), [VIVO(N‐2, 3‐D)2][1, 3‐H2PDA] ( 2 ), and [VVO2(N‐2, 3‐D)(1, 3‐HPDA)] · 1, 3‐PDA ( 3 ) (cat = catechol, N‐2, 3‐D = naphthalene‐2, 3‐diol, 1, 3‐PDA = 1, 3‐propanediamine) were synthesized and characterized by X‐ray diffraction, IR and UV/Vis spectroscopy, and cyclovoltammetry. X‐ray analysis reveals that the spatial frameworks of complexes 1 – 3 are all constructed by hydrogen bonds donated by [1, 3‐HnPDA]n+ (n = 1, 2) cation, forming distinct chain structures. Complexes 1 and 2 are both in the non‐chiral form of VO(L)2, but 2 crystallizes in the chiral space group (P6522), due to the symmetry element of spiral axis, whereas complex 3 contains both enantiomers of chiral VO2(L1)(L2) units, but crystallizes in the non‐chiral space group (P$\bar{1}$ ). The electrochemical behavior of the three complexes is studied in comparison with that of the free ligands. Complex 1 shows a pair of potentials assigned to the redox behavior of vanadium, while complexes 2 and 3 exhibit no such redox potentials. Pharmaceutical screening of complexes 1 – 3 were carried out against three representative cancer cell lines: A‐549 (lung cancer), Bel‐7402 (liver cancer) and HCT (colonic cancer) by MTT [3‐(4, 5‐dimethylthiazoyl‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] assay. The results show that the vanadium‐catechol complex 1 exhibits more obvious anti‐proliferating effects against the three cell‐lines, whereas the two vanadium‐N‐2, 3‐D complexes 2 and 3 basically display no such effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号