首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior and motional mobility in binary blends of poly(4‐methylstyrene) (P4MS) and poly(cyclohexyl methacrylate) (PCHMA) have been examined by 13C solid state NMR techniques. The blend miscibility was studied by measuring the 1H spin‐relaxation times in the laboratory frame (T1H) and in the rotating frame (TH), respectively. Although intermolecular spin diffusion contributes to the proton relaxations in accordance with homogeneity, TH data shows signs of in complete averaging. The TH relaxation behavior indicates the existence of heterogeneous do mains with shortest dimensions in the nanometer range, which is also sup ported by the intermolecular cross polarization experiments with variable contact times. In addition, according to the resuits of carbon T relaxation time measurements, it is concluded that mixing is intimate some what enough to cause a reduction in local chain mobility for P4MS and vice versa for PCHMA.  相似文献   

2.
Crystallizable runs of ethene in ethene-propene copolymers can be identified in 13C CPMAS NMR spectra as a resonance at 33 ppm. In the absence of spin diffusion, the variation in intensity of this resonance with a 1H spin lock will reflect the intrinsic TH. Spin diffusion leads to a more complex relaxation decay, which reflects the local polymer morphology. Simulations of the spin diffusion process have been carried out for a simplified two-phase model for the morphology with the aim of determining whether the lamellar thickness of the crystalline and amorphous regions can be found from the TH observed via the 13C NMR spectrum. Calculations covering the expected range of the input parameters, namely the spin diffusion coefficients, domain lengths, and intrinsic relaxation times, show that, providing the intrinsic relaxation time in the amorphous phase is known, an accurate estimate of the crystalline and amorphous lamellar thicknesses can be made. Analysis of simulated TH decays indicate that, in general, the time constant of the fastest decaying component can be identified with the intrinsic relaxation time of the amorphous phase. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Ethylcellulose films cast from concentrated solutions of chloroform, benzene, and carbon tetrachloride were subjected to the NMR relaxation measurements including 1H spin-lattice relaxation time (T1H), rotating-frame 1H spin-lattice relaxation time (TH), and 13C spin-lattice relaxation time (T1C). The values of TH for carbons in the glucose units of ethyl-cellulose were of the same order of magnitude as those reported for the crystalline and noncrystalline regions of ramie cellulose. The values of T1C for unsubstituted C2, C3 carbons were smaller than those for the corresponding carbons in the noncrystalline region of native celluloses. The T1C values for unsubstituted C2, C3, and substituted C6 carbons showed a small but definite dependence on the solvent from which the films were cast. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

5.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

6.
This study uses variable temperature 19F solid‐state nuclear magnetic resonance (SSNMR) spectroscopy to determine the influence of electrostatic interactions on the T1, T, and T2 values of Nafion®. Because of a “homogenizing” of the T1's as a result of spin diffusion, it was not possible to resolve from the T1 experiments the relative motions of the side‐ and main‐chain. The initial increase in T as a function of increasing temperature has been attributed to backbone rotations that increase with increasing temperature. The maxima observed in the T plots suggest a change in the dominant relaxation mechanism at that temperature. The similarity in relaxation behavior of the side‐ and main‐chains suggests that the motions are dynamically coupled, because of the fact that the side‐chain is directly attached to the main‐chain. Two T values were observed for the main‐chain at high temperatures, which has been attributed to a thermally activated ion‐hopping process. The results of T2 studies show that correlated motions of the side‐ and main‐chain exist at low temperatures. However, at elevated temperatures the T2 values for the side‐chain increase rapidly while remaining relatively constant for the main‐chain, indicating an onset of mobility of the side‐chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2177–2186, 2007  相似文献   

7.
The dynamics of amorphous aromatic polyesters consisting of poly(ethylene terephthalate) (PET), poly(ethylene isophthalate) (PEI), and poly(ethylene 2,6-naphthalenedicarboxylate) (PEN) has been investigated by means of solid state CPMAS 13C NMR. Proton T2, 13C T, and proton T decays have been measured in particular, and the experimental data fitted to suitable model functions to determine best relaxation parameters. The fitting results show for proton T2 and 13C T measurements the presence of two components with different relaxation times and intensities, arising from different motional domains. The proton T, on the contrary, shows a single component which limits the dimensions of the two regions to less than 20 Angstroms. The dependence of 13C T values on two different irradiating field strengths (H1 = 38 KHz, H1 = 60 KHz) allowed the assignment of each component to relatively rigid and mobile regions. By comparing the three polymers we observe that PEN and PEI have a similar relaxation behavior, while a higher fraction of mobile components was found for PET. These differences are believed to arise mainly from local motions of the aromatic rings. The relaxation measurements have been evaluated to suggest a correspondence to O2 and CO2 gas permeabilities in PET, PEI, and PEN. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1557–1566, 1998  相似文献   

8.
The crystalline–noncrystalline structure and its structural changes from thermal treatments for ethylene ionomers have been investigated with solid‐state 13C and 23Na NMR spectroscopy. 13C spin–lattice relaxation time (T1C) measurements reveal that as‐received ethylene ionomers have much enhanced molecular mobility in the crystalline region in comparison with conventional polyethylene samples. By appropriate annealing, however, polyethylene‐like morphological features reflecting T1C behavior can also be observed. 13C spin–spin relaxation time (T2C) measurements for the noncrystalline region reveal the existence of two components with different T2C values, and these two components have been assigned to the crystalline–amorphous interfacial and rubbery–amorphous components. These results indicate that the structure of the major part of the noncrystalline region in the ethylene ionomers is similar to that of bulk‐crystallized polyethylene samples, regardless of possible ionic aggregates. The origin of the lower temperature endothermic peak in the heating process of the differential scanning calorimetry curve observed for the as‐received sample has also been examined somewhat in detail. As a result, it is proposed that the melting of smaller crystallites produced during storage at room temperature is the origin of the lower temperature peak. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1142–1153, 2002  相似文献   

9.
The 13C spin-lattice relaxation times T1 of 13C-labeled polyethylene crystallized under different conditions were measured at temperatures from ?120 to 44°C by variable-temperature solid-state high-resolution 13C nuclear magnetic resonance (NMR) spectroscopy, in order to determine accurately the dynamics of the noncrystalline region of the polymer. From these results, it was found that the T1 minimum for the CH2 carbons in the noncrystalline region of solution-crystallized polyethylene with high crystallinity appears at higher temperature by about 20°C than that of melt-quenched polyethylene with low crystallinity. This means that the molecular motion of the CH2 carbons in the noncrystalline regions is more constrained at a given temperature in the material of higher crystallinity. Furthermore, dynamics of the noncrystalline region is discussed in terms of the 13C dipolar dephasing times.  相似文献   

10.
The effects of solution processing and thermal annealing on thin film morphology and crystalline structures of regioregular poly(3‐hexyl thiophene) (RR P3HT) are studied in terms of molecular weight (Mw). Using grazing‐incidence X‐ray diffraction, π‐conjugated planes in drop‐cast films from chloroform solutions are found to be preferentially oriented parallel to the substrates regardless of Mw. However, the mesoscale nanocrystalline morphology of the drop‐cast films is significantly affected by Mw, exhibiting a distinctive morphological transition from short nanorods to long nanofibrils above a critical number‐averaged Mw (~ 3.6 kDa). This is probably due to the change in a conformation change from an extended‐chain to a folded‐chain, as Mw of RR P3HT increases. In contrast, spin‐casting of high Mw RR P3HT produces less ordered films with a lower crystallinity and mixed parallel/perpendicular orientations of π‐conjugated planes. The crystallinity and parallel π‐conjugated orientation of RR P3HT in spin‐cast films could be improved by thermal treatments at high‐temperatures either (1) above the glass transition temperature or (2) above the melting temperature of RR 3PHT followed by recrystallization upon cooling under vacuum. However, the charge mobility of the spin‐cast films for a field‐effect transistor application is still lower than that of the drop‐cast films. This would be attributed to the chain oxidation and the development of distinct grain boundaries between RR P3HT nanofibrils during the thermal treatments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1303–1312, 2007  相似文献   

11.
The heterogeneous higher order structure and molecular motion in a single crystalline film of a vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer with 73 mol % VDF was investigated with the 1H–13C cross‐polarization/magic‐angle spinning NMR technique. A transient oscillation was observed in plots of the 13C peak intensity versus the contact time for the CH2, CHF, and CF2 groups. On the basis of the extended cross‐relaxation theory of spin diffusion, we determined that the oscillation behavior was caused by the TrFE‐rich segments in the chain and that the crystal consisted of VDF‐rich and TrFE‐rich domains. The former had TrFE‐rich segments in VDF and TrFE fractions of 0.24 and 0.27, respectively, and the latter had VDF‐rich segments in a VDF fraction of 0.49. The spin–lattice relaxation time T1ρH in the rotating frame for each group was minimal in the three temperature regions of β, αb, and αc (↑) on heating and in the two temperature regions of α1D and αc (↓) on cooling. The αc (↑) and αc (↓) processes depended on the first‐order ferroelectric phase‐transition regions on heating and cooling, respectively. The motional modes for the other processes were confirmed by the T1ρH minimum behavior of the VDF and TrFE groups in the TrFE‐rich domain and the VDF‐rich segments in the VDF‐rich domain. The β and αb processes were attributed to the flip–flop motion of the TrFE‐rich segments and the competitive motion of the TrFE‐ and VDF‐rich segments in the ferroelectric phase, respectively. The α1D process was due to the one‐dimensional diffusion motion of the conformational defects along the chain in the paraelectric phase, accompanied by the trans and gauche transformation of the VDF conformers of ttg+tg? and g+tg?tt. The effect of the competitive motion of the TrFE‐rich segment on the thermal stability of the VDF‐rich segment in the chain near the Curie temperature was examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1026–1037, 2002  相似文献   

12.
The effects of the addition of silica nanoparticles (SNPs) on wettability of regioregular poly(3‐hexylthiophene) (P3HT) organic semiconductor solutions on hydrophobic substrates and the carrier mobility in organic field‐effect transistors (OFETs) made of these films are investigated. The dewetting of films made from P3HT solutions on hydrophobic substrates modified with octadecyltrichlorosilane (ODTS) is markedly suppressed after the addition of SNPs with phenyl surfactants. This enables us to fabricate continuous P3HT/SNPs films with high crystallinity by the conventional spin‐coating technique, leading to higher mobility compared with P3HT FETs fabricated on non‐modified substrates. Moreover, the addition of SNPs with larger diameters compensates for the degradation of mobility associated with the increase in the concentration of SNPs. Solution‐processed P3HT/SNPs FETs on ODTS‐modified substrates exhibit a field‐effect mobility of 1.3 × 10?2 cm2 V?1 s?1, which is almost comparable to that of P3HT FETs without SNPs (2.1 × 10?2 cm2 V?1 s?1). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 509–516  相似文献   

13.
The 50% increased permeability after annealing of semicrystalline poly(ethylene/vinylacetate) containing 3 mol % vinylacetate is linked to increased mobility in the amorphous phase, as identified by line‐narrowing of 1H wideline nuclear magnetic resonance (NMR) spectra and by reduced cross‐polarization efficiency in 13C NMR. Other morphological parameters, such as crystallinity, measured as 30 to 35% by differential scanning calorimetry (DSC) and NMR, are hardly changed by annealing. Small‐angle X‐ray scattering and NMR studies, using spin diffusion as well as T and T1 relaxation, detected only a small increase in crystallite thickness. The annealing‐induced enhancement in segmental mobility in the amorphous regions corresponds to a temperature shift of about 10 K, from which an increase of the motional rate by a factor of 2 is estimated, and which can account for the enhancement in the permeability. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2774–2780, 2001  相似文献   

14.
The electron spin echo (ESE) technique is applied to determine the spin relaxation times of long-lived light-induced radicals and short-term spin-correlated radical pairs (SCRPs) formed by the laser flash of a composite consisting of [6,6]-phenyl-C61-butyric acid methyl ether (PCBM) and poly-(3-hexylthiophene) (P3HT) at 80 K. The ESE signal dependences recorded to measure the longitudinal relaxation times of P3HT+/PCBM? SCRPs and the free P3HT+ radical are fitted by the exp(-(t/T 1)0.6) dependence with T 1 values lying in the microsecond time scale. The difference in the transverse spin relaxation times of the P3HT+/PCBM? radical paira appeared after selective and non-selective echo-detected EPR spectrum excitation is explained by the instantaneous diffusion model. Based on the model, the magnetic interaction energy between the electron spins in P3HT+/PCBM? SCRPs is estimated; E/? ~ 106 s?1.  相似文献   

15.
The assignment of 13C chemical shifts of several symmetric tetraalkylammonium salts in acetonitrile is based on alkyl chain carbon spin–lattice relaxation rates (T1?1), and on concentration-dependent changes in these rates.  相似文献   

16.
Solid state 13C-NMR was used to investigate the miscibility and subsequent separation of solution-cast blends of poly(vinylidene fluoride) (PVF2) and poly(methyl methacrylate) (PMMA) with aging for a range of compositions. It was found that one amorphous phase and intimate mixing of the polymer chains in this phase existed for all compositions of the blends, even after 2 months of aging at room temperature as determined by the proton spin lattice relaxation time T1ρH in the rotating frame, and the time constant TCH for transfer of magnetization. The T1ρH is sensitive to the spatial homogeneity of the blend via spin diffusion and would indicate the presence of phases or domains in the amorphous component of the blend larger than approximately 19 Å. The TCH is proportional to the inverse sixth power of the interatomic distances needed for transfer of magnetization from proton to carbon and would be sensitive to a separation of polymer chains in the amorphous phase with aging on the order of 4–5 Å. There was an increase of the T1ρH and TCH values with aging, indicating that a subtle separation between unlike chains in the amorphous phase was occurring although a single amorphous phase was present.  相似文献   

17.
The structure of laboratory‐made polyHIPEs was successfully characterized by cross‐polarity/magic‐angle spinning, solid‐state 13C NMR experiments. The signals of vinyl groups appeared in the spectrum of the polyHIPE precursor PH? CH?CH2, which was prepared by the polymerization of the divinylbenzene continuous phase from a highly concentrated reverse emulsion. This material was chemically modified by the regioselective free‐radical addition of thiols to the pendant vinyl groups. Spectra of materials modified by the grafting of C8 and C12 alkyl chains, PH? SC8 and PH? SC12, respectively, were produced. The signals of the vinyl groups disappeared in favor of methylene groups. This experiment clearly established that the alkyl chains were covalently bound to the polymer. To elucidate the dynamic aspect of long chains in polyHIPE, we measured the 13C spin–lattice relaxation times (T1) of PH? SC12 from 25 to 100 °C with variable‐temperature, solid‐state, high‐resolution 13C NMR spectroscopy, revealing a strong variation in T1 along the alkyl side chain. Furthermore, the crystallinity of a wide range of chemically modified polyHIPEs, including PH? SC12, was studied with pulse 1H NMR. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 956–963, 2001  相似文献   

18.
Blends of poly(vinyl chloride) (PVC) with Poly(N‐vinyl pyrrolidone) (PVP) were investigated by Fourier infrared spectroscopy (FTIR) and high‐resolution solid‐state 13C cross‐polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The intermolecular interactions between PVP and PVC are weaker than the self‐association of PVP and the inclusion of the miscible PVC results in the decreased self‐association of PVP chains, which was evidenced by the observation of high‐frequency shift of amide stretching vibration bands of PVP with inclusion of PVC. This result was further substantiated by the study of 13C CP/MAS spectra, in which the chemical shift of carbonyl resonance of PVP was observed to shift to a high field with inclusion of PVC, indicating that the magnetic shielding of the carbonyl carbon nucleus is increased. The proton spin‐lattice relaxation time in the laboratory frame (T1 (H)) and the proton spin‐lattice relaxation time in the rotating frame (T(H)) were measured as a function of the blend composition to give the information about phase structure. It is concluded that the PVC and PVP chains are intimately mixed on the scale of 20–30Å. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2412–2419, 1999  相似文献   

19.
Multinuclear solid‐state NMR and powder X‐ray diffraction data collected for phosphonate materials Zr(O3PC6H4PO3) · 3.6H2O and Sn(O3PC6H4PO3)0.85(O3POH)0.30 · 3.09H2O have resulted in the layered structure, where the phosphonic acids cross‐link the layers. The main structural motif (the 111 connectivity in the PO3 group) has been established by determination of chemical shift anisotropy parameters for phosphorus nuclei in the phosphonate groups. An analysis of the variable‐temperature 31P T1 measurements and the shapes of the phosphorus resonances in the 31P static NMR spectra have resulted in the dipolar mechanism of the phosphorus spin‐lattice relaxation, where the rotating phenylene rings reorient dipolar vectors PH as a driving force of the relaxation process. It has been found that water protons do not affect the 31P T1 times. The activation energy of the phenylene rotation in both compounds has been determined as low as 12.5 kJ/mol. The interpretation of the phosphorus relaxation data has been independently confirmed by the measurements of 1H T1 times for protons of the phenylene rings.  相似文献   

20.
Bulk poly(ethylene terephthalate) PET has been reorganized both morphologically and conformationally by processing from its inclusion complex (IC) formed with γ‐cyclodextrin (CD). In the narrow channels of its γ‐CD‐IC crystals the included guest PET chains are isolated from neighboring PET chains and the ethylene glycol (EG) units adopt the highly extended g±tg? kink conformations, whose cross‐sectional diameters are ~80% of the diameter of the fully extended, all‐trans crystalline PET conformer, though they are nearly (~95%) as extended. When the highly extended, unentangled guest PET chains are coalesced from their γ‐CD‐IC crystals by exposure to hot water, host γ‐CDs are removed and the PET chains are presumably consolidated into a bulk sample with a morphology and constituent chain conformations not normally found in PET samples solidified from their randomly coiling, possibly entangled, disordered melts and solutions. Observations by polarized light and atomic force microscopies provide visual evidence for widely different semicrystalline morphologies developed in coalesced and as‐received PETs when crystallized from their melts, with possibly chain extended, small crystals and spherulitic, chain‐folded, large crystals, respectively. DSC observations reveal that coalesced PET is rapidly crystallizable from the melt, while as‐received PET is slow to crystallize and is easily quenched into a totally amorphous sample. Analyses of 13C‐NMR data strongly indicate that the PET chains in the noncrystalline regions of the coalesced sample remain predominantly in the highly extended kink conformations, with g±tg? EG units, which are required by their inclusion into PET‐γ‐CD‐IC crystals, while the predominantly amorphous PET chains in the as‐received sample have high concentrations of gauche± ? CH2? CH2? and trans ? O? CH2? ,? CH2? O? EG bond conformations. 13C‐NMR T1(13C) and T(1H) relaxation studies show no evidence of a glass transition for coalesced PET, while the as‐received sample shows abrupt changes in both the MHz [T1(13C)] and kHz [T(1H)] motions at TTg. Preliminary observations of differences in their macroscopic properties are attributed to the very different morphologies and conformations of the constituent chains in these PET samples. Apparently the kink conformers in the noncrystalline regions of coalesced PET are at least partially retained for extended periods even in the melt and are rapidly crystallized upon cooling. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 386–394, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号