首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Three selective CB2 cannabinoid receptor ligands have recently been discovered to be promising anti-inflammatory agents but their low water solubility hinder their per os administration. The popularity of the cyclodextrins, from a pharmaceutical standpoint lies on their ability to interact with poorly water-soluble drugs and improve their solubility. Herein, three experimental approaches for calculating the stability constant of complexes between the selective CB2 ligands and either the β-CD or the HP-β-CD, were tested: nuclear magnetic resonance, micellar electrokinetic chromatography and high performance liquid chromatography in reversed phase. In NMR studies the calculated K values were relatively high and were between 1486 and 3571 M?1 with β-CD. With HP-β-CD they were between 1203 and 2650 M?1. Concerning the two others techniques the K values were found lower. In MECK studies with β-CD they were between 308 and 792 M?1 and with HP-β-CD between 124 and 764 M?1. Finally in RP-HPLC studies with β-CD, they were between 539 and 1144 M?1 and with HP-β-CD between 196 and 396 M?1. These calculated constants suggest that a complexation phenomenon occurs. A model for inclusion of one of the CB2 ligands in the β-CD was then proposed from molecular modeling studies.  相似文献   

2.
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV–Vis, 1H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a BS-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 ± 837 M?1. Stoichiometry was established by the UV spectrophotometer using Job’s plot method and, also confirmed by molecular modeling. Data from 1H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-β-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.  相似文献   

3.
Guest–host interaction of astemizole (Astm) with cyclodextrins (CDs) has been investigated using phase solubility diagrams (PSD), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), proton nuclear magnetic resonance (1H-NMR) and molecular mechanical modeling (MM+). Estimates of the complex formation constant, K 11, show that the tendency of Astm to complex with CDs follows the order: β-CD>HP-β-CD>γ-CD, α-CD. 1:1 Astm/β-CD complex formation at pH=5.0 was largely driven by the hydrophobic effect (desolvation), which was quantitatively estimated at −16.5 kJ⋅mol−1, whereas specific interactions contribute only −5.3 kJ⋅mol−1 to 1:1 complex stability (ΔG 11o=−22.7 kJ⋅mol−1). The percentage contributions of the hydrophobic effect and specific interactions were therefore 73 and 27%, respectively. Both enthalpic and entropic factors contribute equally well (−11 kJ⋅mol−1 each) to 1:1 Astm/β-CD complex stability. 1H-NMR and MM+ molecular modeling studies indicate the formation of different isomeric 1:1 and 1:2 complexes. The dominant driving force for complexation is evidently van der Waals with very little electrostatic contribution. PSD, 1H-NMR, DSC, XRPD and MM+ studies proved the formation of inclusion complexes in solution and the solid state.  相似文献   

4.
Guest-host interactions of haloperidol (Halo) with β-cyclodextrin (β-CD) have been investigated using several techniques including phase solubility diagrams (PSD), proton nuclear magnetic resonance (1H-NMR), X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and molecular mechanical modeling (MM+). From an analysis of the PSDs, both protonated and neutral Halo (pK a=8.5) form soluble 1:1 and 1:2 Halo/β-CD complexes, while the insoluble complex has 1:2 (Halo:β-CD) stoichiometry (BS-type PSD). Ionization of Halo reduces its tendency to complex with β-CD, where the protonated species at pH=4.6 and 6.0 have K 11 values of 100 L⋅mol−1 and 298 L⋅mol−1, respectively, compared with 2000 L⋅mol−1 for neutral species at pH=10.6. The hydrophobic character of Halo was found to provide 32% of the driving force for complex stability, whereas other factors including specific interactions contribute −15 kJ⋅mol−1. 1H-NMR and MM+ studies indicate the formation of isomeric 1:1 and 1:2 complexes, where the chlorophenyl, flurophenyl, piperidine and butanone moieties become included into separate β-CD cavities. The dominant driving force for complexation is evidently van der Waals with very little electrostatic contribution. PSD, 1H-NMR, XRPD, DSC and SEM studies indicate the formation of inclusion complexes in solution and in the solid state.  相似文献   

5.
The aim of this study was to investigate the effect of β-cyclodextrin (β-CD) on the solubility and dissolution rate of meloxicam. The methods that were employed to prepare meloxicam–β-cyclodextrin complexes were physical mixture, kneaded dispersion, and spray drying. Spray drying method was found to be the best to form a true inclusion complex. Complexes were characterized by thermal analysis, X-ray diffractometry (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The apparent stability constant of the complex, K c, calculated from the slope and intercept of the AL solubility diagram was found to be 429.73, 259.96, 183.31, and 36.50 L mol?1 at pH 2, 3, 6.5, and 10.3, respectively. The dissolution rate of meloxicam from the complexes was higher than from meloxicam alone. Molecular modeling was also used to investigate the interaction between meloxicam and β-CD. The dominant driving force for the complexation was evidently Van der Waals force with very little electrostatic contribution.  相似文献   

6.
In present work the complexation of Res with two kinds of cyclodextrins (CDs), native β-cyclodextrin (β-CD) and modified hydroxypropyl-β-cyclodextrin (HP-CD), have been investigated by fluorescence spectroscopy, 1H-NMR spectroscopy and molecular modeling methods. The stoichiometric ratios, inclusion constants and thermodynamic parameters have been determined by the fluorescence data. In all cases 1:1 inclusion complexes are formed. The inclusion ability of HP-CD is larger than that of β-CD. Both inclusion processes have negative ?G, negative ?H and positive ?S. Thermodynamic analysis suggests that Van der Waals force of guest-host interactions and the release of high-enthalpy water molecules from the cavity of CDs play important roles in driving complex formation. The study of molecular modeling shows that part of the A-ring and the B-ring of Res are placed in the cavity of β-CD, and the hydroxyl groups are projected outside. As for Res in HP-CD, the B-ring of Res is included in the cavity of HP-CD, and part of the A-ring is pointed outside. 1H-NMR spectroscopy results show that H2, H3, H4 and H5 protons of Res are more affected by the complexatin, indicating that they are located inside the torus of CDs, which are in agreement with the result of the molecular modeling.  相似文献   

7.
In the present study investigated the effect of curcumin (CUR) alpha (α), beta (β) and gamma (γ) cyclodextrin (CD) complexes on its solubility and bioavailability. CUR the active principle of turmeric is a natural antioxidant agent with potent anti-inflammatory activity along with chemotherapeutic and chemopreventive properties. Poor solubility and poor oral bioavailability are the main reasons which preclude CUR use in therapy. Extent of complexation was β-CD complex (82 %) > γ-CD (71 %) > α-CD (65 %). Pulverization method resulted in significant enhancement of CUR (0.002 mg/ml) solubility with CUR α-CD complex (0.364 mg/ml) > CUR β-CD complex (0.186 mg/ml) > CUR γ-CD complex (0.068 mg/ml). Gibbs-free energy and in silico molecular docking studies favour formation of α-CD complex > β-CD complex > γ-CD complex. With reference to CUR, relative bioavailability of CUR α-CD, CUR β-CD and CUR γ-CD complexes were 460, 365 and 99 % respectively. CUR–CD complexes exhibited increased bioavailability with an increase in t½, tmax, Cmax, AUC, Ka, and MRT; and a decrease in Ke, clearance and Vd values. AUC increase was CUR α-CD complex > CUR β-CD complex > CUR γ-CD complex. Significant difference (p < 0.05) was observed between CUR α-CD complex and CUR γ-CD complex by one-way ANOVA and Dunnett’s post hoc test for multiple comparison analysis. Correlation observed between in vitro, in vivo and in silico methods indicates potential of in silico and in vitro methods in CD selection.  相似文献   

8.
In this study, investigations were performed in regard to the possibility of complexation of actarit (ACT) with β-cyclodextrin (β-CD) for improving the solubility and dissolution rate. Complexes of β-CD and ACT (ACT/β-CD molar ratio = 1/1) were prepared using the cogrinding method. Formation of an ACT/β-CD inclusion complex by cogrinding was confirmed using powder X-ray diffraction measurement. The powder X-ray diffraction of the ground mixture (ACT/β-CD = 1/1) showed a halo pattern. The diffraction pattern of the ground mixture after storage at RH 82 %, 40 °C exhibited new diffraction peaks at 2θ = 11.6º and 17.8º, and differed from those of ACT and β-CD crystals. In vitro studies showed that the solubility and dissolution rate of ACT were significantly improved by complexation with β-CD with respect to the drug alone. In 1H-NMR measurement, changes in chemical shift (1H) suggested that the drug phenyl moiety was included in the cavities of β-CD mainly by hydrophobic interaction, and that the primary hydroxy side of β-CD was tightly associated with each drug. The results show clear evidence of intermolecular interaction between β-CD and ACT.  相似文献   

9.
Molecular inclusion complexes of usnic acid (UA) with β-cyclodextrin (β-CD) and 2-hydroxypropyl β-cyclodextrin (HP β-CD) were prepared by the co-precipitation method in the solid state in the molar ratio of 1:1. Structural complexes characterization was based on different methods, FTIR, 1H NMR, XRD and DSC. Parallel to the complex by the above methods, corresponding physical mixtures of UA with cyclodextrins and complexing agents (β-CD, HP β-CD and UA) were analyzed. The results of DSC analysis showed that, at around 200 °C, the endothermal peak in the complexes with cyclodextrins originating from the UA melting has disappeared. Complex diffractogram patterns do not contain peaks characteristic for the pure UA. They are more appropriate to cyclodextrin diffractogram. This fact points to the molecular encapsulation of UA in the cyclodextrin cavity. Chemical shifts in 1H NMR spectra after the inclusion of UA into the cyclodextrin cavity, especially H-3 protons (0.0012 and 0.0102 ppm in the β-CD and HP β-CD, respectively) and H-5 and H-6 (0.0134 ppm) and hydrogen from CH3 (0.0073 ppm) HP β-CD also points to the formation of molecular inclusion complexes. The improved solubility of UA in water was achieved by molecular incapsulation. In the complex with β-CD the solubility is 0.3 mg/cm3, with HP β-CD 4.2 mg/cm3 while the uncomplexed UA solubility is 0.06 mg/cm3. The microbial activity of UA and both complexes was tested against eight bacteria and two fungi and during the test no reduced activity of UA in the complexes was observed.  相似文献   

10.
Complexation of ebastine (EB) with hydroxypropyl and methyl-β-cyclodextrin (HP-β-CD and Me-β-CD) was studied in aqueous solutions and in the solid state. The formation of inclusion complexes in aqueous solutions was analysed by the solubility method. The assays were designed using low CD concentrations compared with the solubility of these derivatives in order to avoid non-inclusion phenomena and to obtain a linear increase in EB solubility as a function of CD concentration. The values of complexation efficiency for HP-β-CD and Me-β-CD were 1.9 × 10?2 and 2.1 × 10?2, respectively. It seems that the non polar character of the methyl moiety slightly favoured complexation. In relation to solid state complexation, 1:1 EB:CD systems were prepared by kneading, and by heating a drug-CD mixture at 90 ºC. They were analysed using X ray diffraction analysis by comparison with their respective physical mixtures. A complex with a characteristic diffraction pattern similar to that of the channel structure of β-CD was formed with Me-β-CD in 1:1 melted and 1:2 EB:CD kneaded systems. Complexation with HP-β-CD was not clearly evidenced because only a slight reduction of drug crystallinity was detected. Finally, the loading of EB in two β-CD polymers cross-linked with epichlorohydrin yielded 7.3 and 7.7 mg of EB/g polymer respectively.  相似文献   

11.
The results of rigorous modeling of phase solubility diagrams, pH solubility profiles and potentiometric titrations revealed the following for benzimidazole (BZ) and BZ/β-CD complexation in aqueous solution: (a) the pK a value of BZ estimated at 5.66 ± 0.08 was reduced to 5.33 ± 0.06 in the presence of 15 mM β-CD at 25 °C, thus indicating inclusion complex formation; (b) BZ forms soluble 1:1 and 2:1 BZ/β-CD complexes with complex formation constants K 11 = 104 ± 8 M−1 and K 21 = 16 ± 6 M−1; (c) protonated BZ forms only 1:1 complex with K 11 = 42 ± 12 M−1; (d) 1H-NMR studies in D2O showed significant upfield chemical shift displacements for inner cavity β-CD protons indicating inclusion complex formation, while (e) Molecular modeling of BZ-β-CD interactions in water clearly indicated complete inclusion of one BZ molecule into the β-CD cavity.  相似文献   

12.
Thermodynamics on inclusion complexation of β-cyclodextrin (β-CD) with n-alkylpyridinium chlorides (C n PC, n = 12, 14, 16) were measured by conductivity technique to evaluate the effects of chain length of C n PC and temperature. The data obtained indicate that inclusion complexes S(CD) and S(CD)2 had formed between surfactant and β-CD in aqueous solution. Investigation showed that the K 1 (first equilibrium constant) for S(CD) formation is greater than K 2 (second equilibrium constant) for S(CD)2 formation. It has been found that C12PC forms only the 1:1 complex, while C14PC and C16PC form 1:1 and 1:2 complexes. Thermodynamic parameters of the complexation, i.e. ΔG°, ΔH° and ΔS° have been also calculated. The large values of ΔG° indicate that complexation between surfactant and β-CD is very favorable.  相似文献   

13.
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.  相似文献   

14.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

15.
The interaction between β-cyclodextrin (β-CD) and the polyphenol rosmarinic acid (RA) is here reported by 1H NMR titration experiments. The formation of an aqueous soluble inclusion complex is confirmed and valuable information regarding mode of penetration of guest into β-CD, stoichiometry, and stability of the complex is obtained. The analysis by the continuous variation method shows the undoubted formation of 1:1 β-CD/RA complex. Additionally, the estimated apparent association constants reveal the importance of the asymmetry of the RA in the complexation; the incorporation of the catechol moiety closer to the carboxylic group is more favorable (K?=?2,028 M?1) than from the other end of the RA molecule (K?=?1,184 M?1). Finally, we have also investigated the antioxidant activity and storage stability of the β-CD/RA complexed system; the presence of β-CD was found to produce a remarkable enhancement on the antioxidant activity.  相似文献   

16.
Complexation between sulconazole (SULC), an imidazole derivative with in vitro antifungal and antiyeast activity, and β-cyclodextrins (β-CD and HP-β-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (1H-NMR). In the solid state, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and RX diffraction studies were used. Solubility studies suggested the existence of inclusion complex between SULC and β-CD or HP-β-CD. 1H-NMR spectroscopy studies showed that the complex formed occurs by complexation of imidazole ring into inner cavity. DSC studies showed the existence of a complex of SULC with β-CD. The TGA and RX studies confirmed the DSC results of the complex. Solubility of SULC in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.  相似文献   

17.
We report that 1:1 and 1:2 complexes are formed for 2-hydroxy-9-fluorenone with β-cyclodextrin (β-CD) and that there is an unusual red shift in emission at higher concentrations of β-CD. Between different stoichiometries of the complexes the titrimetric curves for the neutral–anionic equilibria for the guests differ drastically and so do the excited state pK values. The formation of an 1:1 inclusion complex with 2-hydroxy-9-fluorenone (2HFN) as the guest in β-CD with the binding constant (K) of 606.65 L·mol?1 was determined. The ground and excited state pK a values for the neutral–mono-anion equilibrium are not affected by β-CD. Hence the hydroxyl group is considered exposed in the aqueous environment. Two different types of inclusion complexes of 2HFN were observed in β-CD. The 1:2 complex of 2HFN shows a red shift from the 1:1 complex and is less fluorescent that the 1:1 complex. The red shift reveals that the 1:2 complex is more stabilized than the 1:1 complex. The excited state pK a values in both complexes with β-CD are higher that those in aqueous solution. This shows that the complexation makes the molecule less acidic in the S1 state. The β-CD molecule is perceived as not able to encapsulate the 2HFN molecule fully, but the larger rim of the β-CD comes closer to the C=O group. The other half of the 2HFN molecule is encapsulated by the second β-CD molecule and thus there is formation of the 1:2 inclusion complex at higher concentrations of β-CD.  相似文献   

18.
The complexation of terfenadine (Terf) with β-cyclodextrin (β-CD) in solution and solid state has been investigated by phase solubility diagram (PSD), differential scanning calorimetry (DSC), powder X-ray diffractometry (PXD) and proton nuclear magnetic resonance (1H-NMR). The PSD results indicated that the salt saturation with the buffer counter ion (citrate−2, H2PO4−1 and Cl−1 ions) of Terf (pK a = 9.5) and the hydrophobic effect play in tandem to increase the value of the complex formation constant (K11) measured at different conditions of pH, ionic strength, buffer type and buffer concentration. The correlation of the free energy of complex formation (ΔG11) with the free energy of inherent solubility of Terf (ΔGSo) obtained by changing the pH, ionic strength and buffer concentration was used to measure the contribution of the hydrophobic effect (desolvation) to complex formation. The hydrophobic effect was found to constitute 57.8% of the driving force for complex stability, while other factors including specific interactions contribute −13.4 kJ/mol. 1H-NMR spectra of Terf–citrate and Terf–HCl salts gave identical chemical shift displacements (ΔΔ) upon complexation, thus indicating that the counter anions are positioned somewhere outside of the β-CD cavity. DSC, XRPD and 1H-NMR proved the formation of solid Terf/acid/β-CD ternary complexes.  相似文献   

19.
Complexation in solution between danazol and two different cyclodextrins [2-hydroxypropyl-??-cyclodextrin (HP-??-CD) and 2-hydroxypropyl-??-cyclodextrin (HP-??-CD)] was studied using phase solubility analysis, and one- and two-dimensional 1H-NMR. The increase of danazol solubility in the aqueous cyclodextrin solutions showed a linear relationship (AL profile). The apparent stability constant, K 1:1, of each complex was calculated and found to be 51.7 × 103 and 7.3 × 103 M?1 for danazol?CHP-??-CD and danazol?CHP-??-CD, respectively. 1H-NMR spectroscopic analysis of varying ratios of danazol and the different cyclodextrins in a mixture of EtOD?CD2O confirmed the 1:1 stoichiometry. Cross-peaks, from 2D ROESY 1H-NMR spectra, between protons of danazol and H3?? and H5??of cyclodextrins, which stay inside the cyclodextrin cavity, proved the formation of an inclusion complex between danazol and the cyclodextrins. For HP-??-CD, the inclusion complex is formed by entrance of the isooxazole and the A rings of danazol in the cyclodextrin cavity. For HP-??-CD, two different inclusion structures may exist simultaneously in solution: one with the isooxazole and A ring in the cavity and the other with the C and D ring inside the cavity. DLS showed that self-aggregation of the CD??s was absent in the danazol HP-??-CD system up to a CD concentration of 10% and in the danazol HP-??-CD system up to a CD concentration of 5%.  相似文献   

20.
Guest–host interaction of prednisone (PN) with cyclodextrins (CDs) have been investigated using phase solubility diagrams (PSD), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM) and molecular mechanical modeling (MM). Estimates of the complex formation constant (K 11) show that the tendency of PN to complex with CDs follows the order: β-CD>γ-CD>HP-β-CD>α-CD. At the same pH of 7.0, β-CD forms soluble 1:1 and insoluble 1:2 PN/CD complexes (BS-type PSDs). The thermodynamic functions for 1:1 PN/β-CD estimated at pH = 7.0 (ΔG 11o=−20.8 kJ⋅mol−1) show that complexation is driven by enthalpy (−30.7 kJ⋅mol−1) but retarded by entropy (ΔS 11o=−33.1 J⋅mol−1⋅K−1) changes. The MM modeling study indicates the formation of different isomeric 1:1 complexes with CDs. PSD, DSC, XRPD, SEM and MM studies established the formation of inclusion complexes in solution and the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号