首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoelectron spectroscopy of the water cluster anions, (H2O)n-, has revealed that several isomeric forms are present for most sizes, and here, we use vibrational spectroscopy to address the structure of the (H2O)6- isomer that more weakly binds the extra electron. To overcome the severe line broadening that occurs in the OH stretching region of this isomer caused by fast electron autodetachment, we concentrate on the low-energy bending modes of the perdeutero isotopomer. Sharp spectroscopic signatures are recovered for two isomers using argon predissociation spectroscopy, and the resulting bands are heavily overlapped. To extract their independent contributions to the observed spectra, we exploit the substantial dependence of their relative populations on the number of attached argon atoms in the (D2O)6-.Ar(m) clusters, determined by photoelectron spectroscopy. The vibrational spectra of each isomer can then be isolated by spectral subtraction, which is implemented with a covariance mapping approach. The resulting band patterns establish that the more weakly binding isomer does not display the characteristic electron-binding motif common to the more strongly bound isomer class. Whereas the strongly binding isomer features a single water molecule pointing toward the excess electron cloud with both of its hydrogen atoms, the spectrum of the more weakly binding isomer suggests a structure where the electron is bound by a number of dangling OH groups corresponding to water molecules in acceptor-donor binding sites.  相似文献   

2.
The crystal structure of two complexes of the isomerscis-syn-cis (isomer A) andcis-anti-cis (isomer B) of dicyclohexano-18-crown-6 with 4-methylbenzenesulfamide have been determined by X-ray single crystal diffraction methods. The two structures have been solved by direct methods and refined to agreement values of 0.067 and 0.038 for isomers A and B respectively. The first isomer forms an inclusion compound with a host/guest ratio of 1 : I; the second one of I:2. The amino groups of the guest molecules are connected by N-H...O hydrogen bonds with oxygen atoms of the polyether molecules. The methyl groups of 4-methylbenzenesulfamide do not form hydrogen bonds.[/p]The host-guest interactions in the molecular complexes, the reciprocal influence of the two molecules on their conformation and the intermolecular contacts between the molecules in the crystal are discussed.  相似文献   

3.
Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.  相似文献   

4.
The strongest and most robust carborane acid, H(CHB11Cl11), has a monomeric structure in the gas phase. IR spectra show two nuH-Cl bands at 2357(br) and 2066(br) cm-1 which, together with DFT calculations, indicate the coexistence of at least two isomers. The acidic proton bridges adjacent chlorine atoms with asymmetric Cl-H...Cl hydrogen bonding. The 12,7 isomer is more stable than the 7,8 isomer. These monomers can be condensed into an amorphous solid phase but are metastable. They quickly decay, first to an amorphous dimeric structure, then to a crystalline polymeric phase that has been characterized by X-ray crystallography. In the polymeric structure, the acidic proton bridges chlorine atoms from the 7-11 positions of carborane anions in linear chains. The dimeric phase (nuCl-H...Cl = 1100-2200 cm-1) and polymeric phase (nuasClHCl ca. 1100 cm-1, v broad) have more nearly symmetrical, low-barrier H-bonding. These findings have implications for the dependency of acid strength upon phase.  相似文献   

5.
We report studies of supersonically cooled water complexes of m-aminobenzoic acid MABA.(H(2)O)n (n = 1 and 2) using two-color resonantly enhanced multiphoton ionization (REMPI) and UV-UV hole-burning spectroscopy. Density functional theory calculations are also carried out to identify structural minima of water complexes in the ground state. For the most stable isomers of both complexes, water molecules bind to the pocket of the carboxyl group in a cyclic hydrogen bond network. Vibrational frequency calculations for the first electronically excited state (S(1)) of these isomers agree well with the experimental observation. The addition of water molecules has a major impact on the normal mode that involves local motion of the carboxyl group, while negligible effects are observed for other normal modes. On the basis of the hole-burning experiment, two major isomers for each complex are identified, corresponding to the two conformers of the bare compound. Compared with the other two isomers of aminobenzoic acid, the red shifts of the origin bands due to water complexation in MABA are considerably larger. Similar to p-aminobenzoic acid and different from o-aminobenzoic acid, the existence of the intermolecular stretching mode is ambiguous in the REMPI spectrum of MABA.(H(2)O)n.  相似文献   

6.
The isomers of (H(2)O)(24) (-) tetrakaidecahedral cluster are studied by applying the Becke-3-parameter density functional theory and Lee-Yang-Parr correlation functional (B3LYP) and 6-311++G** basis set. Three isomers are selected on the basis of stabilization energy values. The vertical electron dissociation energies (VDE) of these isomers are 1.353, 0.404, and 0.258 eV, respectively. The experimental VDE value of 1.31 eV [J. Chem. Phys. 92, 3980 (1990)] for this cluster size is in excellent agreement with that calculated for isomer 1, suggesting the dominance of this isomer in the experiment. Four water molecules in this isomer share most of the -1 charge. These four water molecules have non-H-bonding H (NHB H) atoms turned toward the cavity, and the inward turned H atoms exhibit a significant lowering of O-H stretch frequency compared to that of a monomer. Isomers 2 and 3 have all 12 NHB H atoms projected outward and have the -1 charge distributed among 7-8 water molecules on the cluster surface.  相似文献   

7.
The NH2Br‐HOX (X = F, Cl, and Br) complexes have been investigated with quantum chemical calculations at the MP2/aug‐cc‐pVTZ level. Five isomers are observed for the Cl and Br complexes, whereas only two isomers are found for the F complex. The geometrical, energetic, and spectroscopic parameters have been analyzed for these complexes. The hydrogen‐bonded complexes are more stable than the halogen‐bonded ones. In most complexes, the associated O? H and O? X bonds are elongated and show a red shift, whereas the distant bonds are contracted and exhibit a blue shift. The complexes have been analyzed with natural bond orbital and atoms in molecules. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

8.
We present the first results from an experiment designed to explore barriers for interconversion between isomers of cluster anions using an Ar-cluster mediated pump-probe technique. In this approach, anions are generated with many Ar atoms attached, and one of the isomers present is selectively excited by tuning an infrared laser to one of the isomer's characteristic vibrational resonances. The excited cluster is then cooled by evaporation of Ar atoms, and the isomer distribution in the lighter daughter ions is measured after secondary mass selection by recording their photoelectron spectra using velocity-map imaging. We apply the method to the water hexamer anion, (H(2)O)(6) (-), which is known to occur in two isomeric forms with different electron-binding energies. We find that conversion of the high-binding (type I) form to the low-binding (type II) isomer is not efficiently driven in (H(2)O)(6) (-) with excitation energies in the 0.4 eV range even though it is possible to create both isomers in abundance in the ion source. This observation is discussed in the context of the competition between isomerization and electron autodetachment, which depends on the relative positions of the neutral and ionic potential surfaces along the isomerization pathway. Application of the method to the more complex heptamer ion, however, does reveal that interconversion is available among the highest binding isomer classes (I and I(')).  相似文献   

9.
We present a synergetic experimental/theoretical study of hydrated hexafluorobenzene anions. Experimentally, we measured the anion photoelectron spectra of the anions, C6F6(-)(H2O)n (n=0-2). The spectra show broad peaks, which shift to successively higher electron binding energies with the addition of each water molecule to the hexafluorobenzene anion. Complementing these results, we also conducted density functional calculations which link adiabatic electron affinities to the optimized geometric structures of the negatively charged species and their neutral counterparts. Neutral hexafluorobenzene-water complexes are not thought to be hydrogen bonded. In the case of C6F6(-)(H2O)1, however, its water molecule was found to lie in the plane of the hexafluorobenzene anion, bound by two O-H...F ionic hydrogen bonds. Whereas in the case of C6F6(-)(H2O)2, both water molecules also lie in the plane of and are hydrogen bonded to the hexafluorobenzene anion but on opposite ends. This study and that of Schneider et al. [J. Chem. Phys. 127, 114311 (2007), preceding paper] are in agreement regarding the geometry of C6F6(-)(H2O)1.  相似文献   

10.
Diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) measurements (4000-1500 cm(-1)) and the results of neutron powder diffraction have been combined to study the structure of adsorption complexes of water in a NaX zeolite at different water loadings (25, 48, 72, and 120 water molecules per unit cell, respectively). Sharp bands corresponding to non-hydrogen-bonded OH groups of water molecules and broad associate bands due to hydrogen-bonded molecules are observed in the DRIFT spectra. We observe a remarkable downshift of the high-frequency associate band in a narrow temperature interval when the water amount decreases from 120 to 72 molecules per unit cell, which could signify some kind of "phase transition" for the water inside the zeolite cavities. Neutron powder diffraction results show that water molecules are predominantly localized in or near the 12-ring windows. Water molecules with hydrogen-bonded and non-hydrogen-bonded OH groups were found, in agreement with the observation of sharp and broad bands in the DRIFT spectra. We find strong evidence for the formation of cyclic hexamers of water molecules localized in the 12-ring windows, which are further stabilized by hydrogen bonds to framework oxygen atoms.  相似文献   

11.
A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid-state structure was determined for the Nd(III) complex. It crystallizes as the TSAP isomer and the unit cell contains two independent molecules of the complex with different Nd-O(water) bond lengths of 2.499 and 2.591 A.  相似文献   

12.
We have studied using molecular dynamics simulations the interaction of the dodecaborate anion, B(12)H(12)(2-), and its amino, trimethyl, and triethyl derivatives with water molecules. We found peculiar organization of the water molecules in the first solvation shell with the formation of a dihydrogen bond between the hydrogen atoms of the anions and the hydrogen atoms of the water molecules. The simulations also show that the organization of the hydration shell is strongly influenced by the substituents in the anions. These differences are likely to play an important role in understanding the interaction of the anions with biological systems like membranes and proteins in aqueous environments.  相似文献   

13.
Cavity ringdown spectra of the A-X electronic transition of all eight isomers of the pentyl peroxy radical are reported. Using the corresponding assignments from previously studied smaller alkyl peroxy radicals, assignments of origin bands are made for the pentyl peroxy isomers including some conformer-specific assignments for bands of a given isomer. Ab initio calculations also were performed to aid in the spectral assignments for neopentyl, t-butyl, and t-pentyl peroxies. In addition to the origins, vibrational bands have also been assigned for some species. Using the analyzed spectra, the relative reactivity of the primary, secondary, and tertiary hydrogen atoms in isopentane could be determined semiquantitatively.  相似文献   

14.
The 1:1 and 2:1 complexes between water and trans- and cis-isomers of nitrous acid have been isolated in argon matrices and studied using FTIR spectroscopy and DFT(B3LYP) calculations with a 6-311++G(2d,2p) basis set. The analysis of the experimental spectra indicate that 1:1 complexes trapped in solid argon involve very strong hydrogen bond in which acid acts as the proton donor and water as the proton acceptor. The perturbed OH stretches are −248, −228 cm−1 red shifted from their free-molecules values in complexes formed by trans- and cis-HONO isomers, respectively. The calculated spectral parameters for the two complexes are in good agreement with experimental data. The calculations also predict stability of two more 1:1 weakly bound complexes formed by each isomer. In these the water acts as the proton donor and one of the two oxygen atoms of the acid as the acceptor. The experimental spectra demonstrate also formation of 2:1 complex between water and trans-HONO isomer in an argon matrix. The performed calculations indicate that the complex involves a seven-membered ring in which OH group of HONO forms very strong hydrogen bond with the oxygen atom of one water molecule and nitrogen atom acts as a weak proton acceptor for the hydrogen atom of the second water molecule of the water dimer. The observed perturbations of the OH stretch of trans-HONO (750 cm−1 red shift) is much larger than that predicted by calculations (556 cm−1 red shift); this difference is attributed to strong solvation effect of argon matrix on very strong hydrogen bond.  相似文献   

15.
Broadband rotational spectroscopy of water clusters produced in a pulsed molecular jet expansion has been used to determine the oxygen atom geometry in three isomers of the nonamer and two isomers of the decamer. The isomers for each cluster size have the same nominal geometry but differ in the arrangement of their hydrogen bond networks. The nearest neighbor O? O distances show a characteristic pattern for each hydrogen bond network isomer that is caused by three‐body effects that produce cooperative hydrogen bonding. The observed structures are the lowest energy cluster geometries identified by quantum chemistry and the experimental and theoretical O? O distances are in good agreement. The cooperativity effects revealed by the hydrogen bond O? O distance variations are shown to be consistent with a simple model for hydrogen bonding in water that takes into account the cooperative and anticooperative bonding effects of nearby water molecules.  相似文献   

16.
The hydrogen bonding of 1:1 complexes formed between serine and water molecules were completely investigated in the present study employing ab initio and Density Functional Theory (DFT) methods at varied basis set levels from 6‐31g to 6‐311++g (2d,2p). For comparison, we also used the second‐order Moller–Plesset Perturbation (MP2) method at the 6‐31+g(d) level. Twelve reasonable geometries on the potential energy hypersurface of serine and water system were considered with the global minimum, 10 of which are cyclic double‐hydrogen bonded structures and the other two are one‐hydrogen bonded structures. The optimized geometric parameters and interaction energies for various isomers at different levels were estimated. The infrared spectrum frequencies, IR intensities, and the vibrational frequency shifts are reported. Finally, the solvent effects on the geometries of the serine–water complexes were also investigated using self‐consistent reaction‐field (SCRF) calculations at the B3LYP/6‐311++g(d,p) level. The results indicate that the polarity of the solvent played an important role in the structures and relative stabilities of different isomers. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol[middle dot](H(2)O)(3) contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.  相似文献   

18.
The evolution of the electronic structure of molecular aggregates is investigated using anion photoelectron (PE) spectroscopy for anionic clusters of anthracene (Ac) and its alkyl derivatives: 1-methylanthracene (1MA), 2-methylanthracene (2MA), 9-methylanthracene (9MA), 9,10-dimethylanthracene (DMA), and 2-tert-butylanthracene (2TBA). For their monomer anions (n=1), electron affinities are confined to the range from 0.47 to 0.59 eV and are well reproduced by density functional theory calculations, showing the isoelectronic character of these molecules. For cluster anions (n=2-100) of Ac and 2MA, two types of isomers I and II coexist over a wide size range: isomers I and II-1 (4< or =n<30) or isomers I and II-2 (n> or = approximately 40 for Ac and n> or = approximately 55 for 2MA). However, for the other alkyl-substituted Ac cluster anions (i.e., 1MA, 9MA, DMA, and 2TBA), only isomer I is exclusively formed, and neither isomer II-1 nor II-2 is observed. The vertical detachment energies (VDEs) of isomer I in all the anionic clusters depend almost linearly on n(-1/3). In contrast, the VDEs of isomers II-1 (n> or =14) and II-2 (n=40-100), appeared only in Ac and 2MA cluster anions, remain constant with n and are approximately 0.5 eV lower than those of isomer I. The PE spectra revealed the characteristics of each isomer: isomer I possesses a monomeric anion core that is gradually embedded into the interior of the cluster with increasing n. On the other hand, isomers II-1 and II-2 possess a multimeric (perhaps tetrameric) anion core, but they differ in the number of layers from which they are made up; monolayer (isomer II-1) and multilayers (isomer II-2) of a two-dimensionally ordered, finite herringbone-type structure, in which electron attachment produces only little geometrical rearrangement. Moreover, the agreement of the constant VDEs of isomer II-2 with the bulk data demonstrates the largely localized nature of the electronic polarization around the excess charge in a crystal-like environment, where about 50 molecules provide a charge stabilization energy comparable to the bulk.  相似文献   

19.
应用量子化学从头计算能量解析梯度法,以HF6/31G为基组优化了HCnS^-与HSC^-n(n=1~9)同分异构团簇离子的几何结构,计算了它们的电子总能量,结果显示HCnS^-比相应的HSC^-n稳定,从相邻簇离子的能量差及簇离子的平均原子结构能可知n为偶数的HCnS^-与HSCn^-较n为奇数的簇离子稳定,能量的差异随着n的增加而逐渐减小,计算和实验结果完全相符,还分别计算了HCnS^-失去H,  相似文献   

20.
Two novel compounds, (L(1)H)(2)[SiF(6)] x 2H(2)O (1) and (L(2)H)(2)[SiF(5)(H(2)O)](2) x 3H(2)O (2), resulting from the reactions of H(2)SiF(6) with 4'-aminobenzo-12-crown-4 (L(1)) and monoaza-12-crown-4 (L(2)), respectively, were studied by X-ray diffraction and characterised by IR and (19)F NMR spectroscopic methods. Both complexes have ionic structures due to the proton transfer from the fluorosilicic acid to the primary amine group in L(1) and secondary amine group incorporated into the macrocycle L(2). The structure of 1 is composed of [SiF(6)](2-) centrosymmetric anions, N-protonated cations (L(1)H)(+), and two water molecules, all components being bound in the layer through a system of NH[...]F, NH[...]O and OH[...]F hydrogen bonds. The [SiF(6)](2-) anions and water molecules are assembled into inorganic negatively-charged layers via OH[dot dot dot]F hydrogen bonds. The structure of 2 is a rare example of stabilisation of the complex anion [SiF(5)(H(2)O)](-), the labile product of hydrolytic transformations of the [SiF(6)](2-) anion in an aqueous solution. The components of 2, i.e., [SiF(5)(H(2)O)](-), (L(2)H)(+), and water molecules, are linked by a system of NH[...]F, NH[...]O, OH[...]F, OH[dot dot dot]O hydrogen bonds. In a way similar to 1, the [SiF(5)(H(2)O)](-) anions and water molecules in 2 are combined into an inorganic negatively-charged layer through OH[...]F and OH[...]O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号