首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic clusters of TiO(2) are modeled by means of state-of-the-art techniques to characterize their structural, electronic and optical properties. We combine ab initio molecular dynamics, static density functional theory, time-dependent density functional theory, and many body techniques, to provide a deep and comprehensive characterization of these systems. TiO(2) clusters can be considered as the starting seeds for the synthesis of larger nanostructures, which are of technological interest in photocatalysis and photovoltaics. In this work, we prove that clusters with anatase symmetry are energetically stable and can be considered as the starting seeds to growth much larger and complex nanostructures. The electronic gap of these inorganic molecules is investigated, and shown to be larger than the optical gap by almost 4 eV. Therefore, strong excitonic effects appear in these systems, much more than in the corresponding bulk phase. Moreover, the use of various levels of theory demonstrates that charge transfer effects play an important role under photon absorption, and therefore the use of adiabatic functionals in time dependent density functional theory has to be carefully evaluated.  相似文献   

2.
3.
4.
Early transition metal dichalcogenides (TMDC), characterized by their quasi-two-dimensional layered structure, have attracted intensive interest due to their versatile chemical and physical properties, but a comprehensive understanding of their structural and electronic properties from a first-principles point of view is still lacking. In this work, four simple TMDC materials, MX(2) (M = Zr and Hf, X = S and Se), are investigated by the Kohn-Sham density functional theory (KS-DFT) with different local or semilocal exchange-correlation (xc) functionals and many-body perturbation theory in the GW approximation. Although the widely used Perdew-Burke-Ernzelhof (PBE) generalized gradient approximation (GGA) xc functional overestimates the interlayer distance dramatically, two newly developed GGA functionals, PBE-for-solids (PBEsol) and Wu-Cohen 2006 (WC06), can reproduce experimental crystal structures of these TMDC materials very well. The GW method, currently the most accurate first-principles approach for electronic band structures of extended systems, gives the fundamental band gaps of all these materials in good agreement with the experimental values obtained from optical absorption. The minimal direct gaps from GW are systematically larger than those measured from thermoreflectance by about 0.1-0.3 eV, implying that excitonic effects may be stronger than previously estimated. The calculated density of states from GW quasi-particle band energies agrees very well with photo-emission spectroscopy data. Ionization potentials of these materials are also computed by combining PBE calculations based on the slab model and GW quasi-particle corrections. The calculated absolute band energies with respect to the vacuum level indicate that that ZrS(2) and HfS(2), although having suitable band gaps for visible light absorption, cannot be used for overall water splitting as a result of mismatch of the conduction band minimum with the redox potential of H(+)/H(2).  相似文献   

5.
Electronic and atomistic structures of clean and reduced ceria surfaces   总被引:1,自引:0,他引:1  
The atomistic and electronic structures of oxygen vacancies on the (111) and (110) surfaces of ceria are studied by means of periodic density functional calculations. The removal of a neutral surface oxygen atom leaves back two excess electrons that are shown to localize on two cerium ions neighboring the defect. The resulting change of valency of these Ce ions (Ce4+ --> Ce3+) originates from populating tightly bound Ce 4f states and is modeled by adding a Hubbard U term to the traditional energy functionals. The calculated atomistic and electronic structures of the defect-free and reduced surfaces are shown to agree with spectroscopic and microscopic measurements. The preferential defect segregation and the different chemical reactivity of the (111) and (110) surfaces are discussed in terms of energetics and features in the electronic structure.  相似文献   

6.
Reiher M 《Inorganic chemistry》2002,41(25):6928-6935
The theoretical study of spin-crossover compounds is very challenging as those parts of the experimental findings that concern the electronic structure of these compounds can currently hardly be reproduced because of either technical limitations of highly accurate ab initio methods or because of inaccuracies of density functional methods in the prediction of low-spin/high-spin energy splitting. However, calculations with reparametrized density functionals on molecules of the thermal spin-crossover type can give improved results when compared with experiment for close-lying states of different spin and are therefore important for, e.g., transition metal catalysis. A classification of transition metal compounds within hybrid density functional theory is given to distinguish standard, critical, and complicated cases. From the class of complicated cases we choose the prominent spin-crossover compound Fe(phen)(2)(NCS)(2) and show in a first step how the electronic contribution to the energy splitting can be calculated. In a second step, the vibrational effects on the spin flip are investigated within the harmonic force-field approximation of the isolated-molecule approach. A main result of the study is the necessity of exact-exchange reduction in hybrid density functionals to arrive at reasonable electronic energy splittings. The study resolves problems that originated from the use of standard density functionals, which are not able to reproduce the electronic contribution to the low-spin/high-spin splitting correctly, and demonstrates to which extent reparametrized density functionals can be used for the prediction of the spin-crossover effect.  相似文献   

7.
Since its discovery in 1977, a number of quantum chemical calculations have been attempted to simulate the metallic state of highly doped trans-polyacetylene. These simulations have focused on the possible closure of the band gap at high doping level due to a charge-induced elimination of Peierls distortion; however, conclusive demonstration of a metallic state has not been achieved. The present study presents density functional theory calculations of the band structure of highly doped trans-polyacetylene with explicit inclusion of the metal atoms in a one-dimensional periodic structure. The results indicate (i) small lattice dimerization, i.e., remnant of Peierls distortion exists even in the heavily doped trans-polyacetylene sample, (ii) charge induced closure of the Peierls gap is not a necessary condition to arrive at a metallic state in such systems, and (iii) electronic correlation, as described at the density functional theory level, with a charge induced small Peierls distortion is sufficient to achieve metallic state of highly doped n-type trans-polyacetylene even in one dimension. Furthermore, comparison of functionals that include differing degrees of electron correlation suggest that correlation promotes formation of the metallic state.  相似文献   

8.
The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these carbon nanoring systems.  相似文献   

9.
The structure, dynamical, and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first-principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta-functional, four gradient-corrected functionals, and the local density and Hartree-Fock approximations. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self-diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and understructured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller average numbers of hydrogen bonds than pure density functionals but similar hydrogen bond populations. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than those of the corresponding pure density functionals.  相似文献   

10.
In this study, we present calculations of the circular dichroism (CD) spectra of complexes between achiral and chiral molecules. Nonzero rotational strengths for transitions of the nonchiral molecule are induced by interactions between the two molecules, which cause electronic and/or structural perturbations of the achiral molecule. We investigate if the chiral molecule (environment) can be represented only in terms of its frozen electron density, which is used to generate an effective embedding potential. The accuracy of these calculations is assessed in comparison to full supermolecular calculations. We can show that electronic effects arising from specific interactions between the two subsystems can reliably be modeled by the frozen-density representation of the chiral molecule. This is demonstrated for complexes of 2-benzoylbenzoic acid with (-)-(R)-amphetamine and for a nonchiral, artificial amino acid receptor system consisting of ferrocenecarboxylic acid bound to a crown ether, for which a complex with l-leucine is studied. Especially in the latter case, where multiple binding sites and interactions between receptor and target molecule exist, the frozen-density results compare very well with the full supermolecular calculation. We also study systems in which a cyclodextrin cavity serves as a chiral host system for a small, achiral molecule. Problems arise in that case because of the importance of excitonic couplings with excitations in the host system. The frozen-density embedding cannot describe such couplings but can only capture the direct effect of the host electron density on the electronic structure of the guest. If couplings play a role, frozen-density embedding can at best only partially describe the induced circular dichroism. To illustrate this problem, we finally construct a case in which excitonic coupling effects are much stronger than direct interactions of the subsystem densities. The frozen density embedding is then completely unsuitable.  相似文献   

11.
We examine the time-dependent density functional theory (TD-DFT) equations for calculating excitation energies in solids with Gaussian orbitals and analytically show that for semilocal functionals, their lowest eigenvalue collapses to the minimum band orbital energy difference. With the introduction of nonlocal Hartree-Fock-type exchange (as in hybrid functionals), this result is no longer valid, and the lowest TD-DFT eigenvalue reflects the appearance of excitonic effects. Previously reported "charge-transfer" problems with semilocal TD-DFT excitations in molecules can be deduced from our analysis by taking the limit to infinite lattice constant.  相似文献   

12.
13.
1 INTRODUCTION Since the discovery of one-dimensional metallic behavior of tetrathiafulvalene (TTF) with tetracyano- quinodimethane (TCNQ)[1], organic charge-transfer (CT) complexes and CT salts have been intensively studied in search of electrically conducting and superconducting properties[2 ~ 6] which are most unusual for an organic material. The most intriguing property is that it is excellent metal with conducti- vity similar to that of metals at room temperature[7, 8]. In these…  相似文献   

14.
We have studied the interaction of atomic hydrogen with (5,5) and (10,0) single-walled carbon nanotubes (SWNT) using density functional theory. These calculations use Gaussian orbitals and periodic boundary conditions. We compare results from the local spin density approximation, generalized gradient approximation (GGA), and hybrid density functionals. We have first kept the SWNT geometric structure fixed while a single H atom approaches the tube on top of a carbon atom. In that case, a weakly bound state with binding energies from -0.8 to -0.4 eV was found. Full geometry relaxation leads to a strong SWNT deformation, weakening the nearest C-C bonds and increasing the binding energy by about 1 eV. Full hydrogen coverage of the (5,5) SWNT converts this metallic nanotube into an insulator with a band gap of 3.4 eV for the GGA functional and 4.8 eV for the hybrid functional. Hybrid functionals perform similar to pure density functional theory functionals for the calculation of binding energies while band gaps critically depend on the functional choice.  相似文献   

15.
The electronic structure of the single component molecular crystal [Ni(ptdt)(2)] (ptdt = propylenedithiotetrathiafulvalenedithiolate) is determined at ambient and high pressure using density functional theory. The electronic structure of this crystal is found to be of the "crossing bands" type with respect to the dispersion of the HOMO and LUMO, resulting in a small, non-zero density of states at the Fermi energy at ambient pressure, indicating that this crystal is a "poor quality" metal, and is consistent with the crystal's resistivity exhibiting a semiconductor-like temperature dependence. The ambient pressure band structure is found to be predominantly one-dimensional, reflecting enhanced intermolecular interactions along the [100] stacking direction. Our calculations indicate that the band structure becomes two-dimensional at high pressures and reveals the role of shortened intermolecular contacts in this phenomenon. The integrity of the molecular structure is found to be maintained up to at least 22 GPa. The electronic structure is found to exhibit a crossing bands nature up to 22 GPa, where enhanced intermolecular interactions increase the Brillouin zone centre HOMO-LUMO gap from 0.05 eV at ambient pressure to 0.15 eV at 22 GPa; this enhanced HOMO-LUMO interaction ensures that enhancement of a metallic state in this crystal cannot be simply achieved through the application of pressure, but rather requires some rearrangement of the molecular packing. Enhanced HOMO-LUMO interactions result in a small density of states at the Fermi energy for the high pressure window 19.8-22 GPa, and our calculations show that there is no change in the nature of the electronic structure at the Fermi energy for these pressures. We correspondingly find no evidence of an electronic semiconducting-metal insulator transition for these pressures, contrary to recent experimental evidence [Cui et al., J. Am. Chem. Soc. 131, 6358 (2009)].  相似文献   

16.
Open-shell reduced density matrix functional theory is established by investigating the domain of the exact functional. For spin states that are the ground state, a particularly simple set is found to be the domain. It cannot be generalized to other spin states. A number of conditions satisfied by the exact density matrix functional is formulated and tested for approximate functionals. The exact functional does not suffer from fractional spin error, which is the source of the static correlation error in dissociated molecules. We prove that a simple approximation (called the Buijse-Baerends functional, Mu?ller or square root functional) has a non-positive fractional spin error. In the case of the H atom the error is zero. Numerical results for a few atoms are given for approximate density and density matrix functionals as well as a recently developed range-separated combination of both.  相似文献   

17.
In this paper, the results are presented from a comparative study of the electronic and geometric structure of copper corroles by means of either density functional theory (DFT, using both pure and hybrid functionals) and multiconfigurational ab initio methods, starting from either a complete active space (CASSCF) or restricted active space (RASSCF) reference wave function and including dynamic correlation by means of second-order perturbation theory (CASPT2/RASPT2). DFT geometry optimizations were performed for the lowest singlet and triplet states of copper corrole, both unsubstituted and meso-substituted with three phenyl groups. The effect of saddling on the electronic structure was investigated by comparing the results obtained for planar (C(2v)) and saddled (C(2)) structures. With DFT, the origin of the saddling distortion is found to be dependent on the applied functional: covalent Cu 3d-corrole π interactions with pure functionals (BP86, OLYP), antiferromagnetic exchange coupling between an electron in the corrolate (C(2)) b type π orbital, and an unpaired Cu(II) 3d electron with hybrid functionals (B3LYP, PBE0). The CASPT2 results essentially confirm the suggestion from the hybrid functionals that copper corroles are noninnocent, although the contribution of diradical character to the copper-corrole bond is found to be limited to 50% or less. The lowest triplet state is calculated at 0-10 kcal/mol and conform with the experimental observation (variable temperature NMR) that this state should be thermally accessible.  相似文献   

18.
The functionality of the proton-coupled electron transfer (PCET) model was tested on a squaraine-sensitized solar cell. The geometrical parameters, excitations, and electronic structures of free and Ti+4-bound squaraine dye were monitored using a set of pure and hybrid density functional theory (DFT) functionals with diffuse and polarization functions. The infrared spectra showed the dye-metal proton transfer. The UV-Vis spectra of unbound and bound squaraine dye using the pure functional (PBEPBE) are in excellent agreement with the experimental ones. The first photoexcited state charge transfer enhanced the charge density around the anchoring group of neat and bound squaraine dye. The injection of electronic charge into the titanium complex was confirmed by density of states (DOS) and natural bond orbital (NBO) analyses. The comparatively high total hyperpolarizability of the squaraine dye is indicative of a potent nonlinear optical (NLO) devise.  相似文献   

19.
20.
根据密度泛函理论,分子的电子密度确定了该体系基态下的所有性质,其中包括结构和反应活性.如何运用电子密度泛函有效地预测分子反应活性仍然是一个有待解决的难题.密度泛函活性理论(DFRT)倾力打造这样一个理论和概念架构,使得运用电子密度以及相关变量准确地预测分子的反应特性成为可能.信息理论方法的香农熵和费舍尔信息就是这样的密度泛函,研究表明,它们均可作为反应活性的有效描述符.本文将在DFRT框架中介绍和引进三个密切相关的描述符, Rényi熵、Tsallis熵和Onicescu信息能.我们准确地计算了它们在一些中性原子和分子中的数值并讨论了它们随电子数量和电子总能量的变化规律.此外,以第二阶Onicescu信息能为例,在分子和分子中的原子两个层面上,系统地考察了其随乙烷二面角旋转的变化模式.这些新慨念的引入将为我们深入洞察和预测分子的结构和反应活性提供额外的描述工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号