首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantum dots with three-dimensional isotropic harmonic confining potentials and up to 60 electrons are studied. The Dirac-Coulomb Hamiltonian serves as a framework, so that relativistic effects are included, and electron correlation is treated at a high level by the Fock-space coupled cluster method, with single and double excitations summed to all orders. Large basis sets composed of spherical Gaussian functions are used. Energies of ground and excited states are calculated. The orbital order is 1s, 2p, 3d, 3s, 4f, 4p, 5g, ...?, and closed-shell structures appear for 2, 8, 18, 20, 34, 40, and 58 electrons. Relativistic effects are negligible for low strengths of the harmonic potential and increase rapidly for stronger potentials. Breit contributions, coming from the lowest order relativistic correction to the interelectronic repulsion terms, are also studied. Correlation effects are significant for these systems, in particular for weak confining potentials and for small systems, where they constitute up to 6% of the total energies. Their relative weight goes down (although they increase in absolute value) for larger systems or confining potentials. Planned applications to quantum dots with impurities are discussed briefly.  相似文献   

2.
We consider a crystal as partitioned into a localized molecular cluster (containing a defect or not) and an embedding region. Within the Hartree–Fock formalism, an expression is derived for an effective potential due to the embedding region of crystal. This potential is part of the cluster Fock operator and requires input from a perfect crystal calculation. Special features of the derivative are rigorous inclusion of cluster-embedding overlap and orthogonality between single-electron states of the embedding region and the function-space manifold of the cluster; physically correct normalization of the Fock eigenstates; and a nontrivial total-energy algorithm. Computational requirements are qualitatively compared with those for an isolated cluster. The method allows for intracluster (and intraembedding) correlation and can be adapted straightforwardly to local density functional approaches. Fundamental aspects of the embedding problem are addressed in a general formulation that is, nevertheless, oriented toward explicit calculations. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
4.
Chien FC  Kuo CW  Chen P 《The Analyst》2011,136(8):1608-1613
The blinking phenomena of the quantum dots have been utilized in the super-resolution localization microscopy to map out the locations of individual quantum dots on a total internal reflection microscope. Our result indicated that the reconstructed image of quantum dots agreed with the topographic image measured by atomic force microscopy. Because of the superior optical properties of the quantum dots, the high localization resolution can be achieved in the shorter acquisition time with larger detected photon numbers. When the cells were labeled with quantum dots, the sub-cellular structures could be clearly seen in the reconstructed images taken by a commercial microscope without using complicated optical systems, special photo-switchable dye pairs or photo-activated fluorescence proteins.  相似文献   

5.
Electronic structure plays an important role in determining the physiochemical properties of semiconductor quantum dots (QDs). Fabrication of high-performance QD devices relies on the reliable determination of electronic structure of QDs. Voltammetry enables the easily accessible detection on the energy levels of QDs. Herein, the fundamentals of voltammetric detection are first reviewed and discussed. Since the common ways used for tailoring electronic structure of QDs include tuning size, surface engineering, and varying composition, we next summarize the recent research on using voltammetry for probing the energy levels when studying these three effects.  相似文献   

6.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

7.
Atomic structure of InAs quantum dots on GaAs   总被引:1,自引:0,他引:1  
In recent years, the self-assembled growth of semiconductor nanostructures, that show quantum size effects, has been of considerable interest. Laser devices operating with self-assembled InAs quantum dots (QDs) embedded in GaAs have been demonstrated. Here, we report on the InAs/GaAs system and raise the question of how the shape of the QDs changes with the orientation of the GaAs substrate. The growth of the InAs QDs is understood in terms of the Stranski–Krastanow growth mode. For modeling the growth process, the shape and atomic structure of the QDs have to be known. This is a difficult task for such embedded entities.

In our approach, InAs is grown by molecular beam epitaxy on GaAs until self-assembled QDs are formed. At this point the growth is interrupted and atomically resolved scanning tunneling microscopy (STM) images are acquired. We used preparation parameters known from the numerous publications on InAs/GaAs. In order to learn more about the self-assemblage process we studied QD formation on different GaAs(0 0 1), (1 1 3)A, and ( )B substrates. From the atomically resolved STM images we could determine the shape of the QDs. The quantum “dots” are generally rather flat entities better characterized as “lenses”. In order to achieve this flatness, the QDs are terminated by high-index bounding facets on low-index substrates and vice versa. Our results will be summarized in comparison with the existing literature.  相似文献   


8.
9.
The fluorescence quenching of quantum dots by hemoglobin has been demonstrated to depend on surface functionalization, and this property has been utilized to construct a novel fluorescent method for rapid, sensitive, and selective detection of trace hemoglobin in urine at microgram level. This method shows low interference and high selectivity for hemoglobin with a limit of detection of 4.3 μg L?1 in water and 66.1 μg L?1 in urine, which are lower than those of currently used methods in labs and clinics. Spike and recovery tests in raw, acidified, and alkalized urine samples exhibit good recovery rates for the spiked concentrations close to the limit of detection.
Figure
Fluorescence spectra and photographs of MPA-QD solution before and after the addition of Hb taken under 365-nm irradiation.  相似文献   

10.
Imaging pancreatic cancer using surface-functionalized quantum dots   总被引:1,自引:0,他引:1  
In this study, CdSe/CdS/ZnS quantum dots (QDs) were used as optical contrast agent for imaging pancreatic cancer cells in vitro using transferrin and anti-Claudin-4 as targeting ligands. CdSe/CdS/ZnS was chosen because the CdSe/CdS/ZnS QDs have better photoluminescence (PL) efficiency and stability than those of CdSe/ZnS. The transferrin-mediated targeting is demonstrated in both a cell-free coprecipitation assay as well as using in vitro confocal microscopy. Pancreatic cancer specific uptake is also demonstrated using the monoclonal antibody anti-Claudin-4. This targeted QD platform will be further modified for the purpose of developing as an early detection imaging tool for pancreatic cancer.  相似文献   

11.
Dong  Fei  Hu  Kewang  Han  Heyou  Liang  Jiangong 《Mikrochimica acta》2009,165(1-2):195-201
Microchimica Acta - A novel method has been developed for methimazole analysis based on the quenching of fluorescence emission from CdSe quantum dots by methimazole. Under optimum conditions, the...  相似文献   

12.
We present the analytic gradient theory and its pilot implementation for the multireference Brillouin-Wigner coupled cluster (BWCC) method and for the state-universal multireference coupled cluster method. The analytic gradient has been derived for three cases: (i) BWCC method without a size-extensivity correction, (ii) BWCC method with the iterative size-extensivity correction, and (iii) for the rigorously size-extensive state-universal method. The pilot implementation is based on full-configuration interaction expansions and is presently limited to single and double excitation levels; however, the resulting equations are general. For BWCC methods, they also do not contain terms explicitly mixing amplitudes of different reference configurations and can thus be implemented in an efficient way. The analytic gradients have been verified with respect to numerically computed ones on the example of CH2 molecule, and geometry optimizations of CH2 and SiH2 have been carried out.  相似文献   

13.
A new version of the multireference Mukherjee's coupled cluster method with perturbative triexcitations has been formulated, which is based on the uncoupled approximation applied to the triples equation. In contrast to the method developed by Evangelista et al. [J. Chem. Phys. 132, 074107 (2010)], the proposed approach does not require to solve the equation for T(3) amplitudes iteratively, yet yields results of essentially the same quality. The method, abbreviated as MR MkCCSD(Tu), has been implemented in the ACES II program package and its assessment has been performed on the BeH(2) model and on the tetramethyleneethane molecule.  相似文献   

14.
Characterization of quantum dots using capillary zone electrophoresis   总被引:1,自引:0,他引:1  
Pereira M  Lai EP  Hollebone B 《Electrophoresis》2007,28(16):2874-2881
Commercially available quantum dots (QDs) were characterized using CE. The CE instruments were laboratory-built, each being capable of both electrokinetic and hydrodynamic injection. Modes of detection include UV absorption and LIF. The CE-LIF system was further modified to handle microliter sample volumes during injection. Sodium phosphate (5-25 mM, pH 7.5-11) was found to be a good buffer electrolyte. Sodium mercaptoproprionate CdTe/CdS (ADS620) QDs and carboxylic acid CdSe/ZnS (T2-Evitag) QDs yielded high separation efficiencies of N = 1.5x10(6) plates at t(M) = 10 min and N = 1.0x10(5) plates at t(M) = 3.8 min, respectively. Apparently the EDC/sulfo-NHS bioconjugation chemistry worked well with the neutral T2-Evitag QDs, but not so well with the negatively charged ADS620 QDs. This preliminary knowledge will serve as a basis for new CE immunoassay studies of QD-biomolecule conjugates and their immunocomplexes with target analytes.  相似文献   

15.
Quantum dots (QDs) based on zinc sulfide are synthesized by a microwave method in an aqueous medium using dioctyl sodium sulfosuccinate (DS) or 4,4′-bipyridine (BP). Based on the analysis of X-ray diffraction profiles the conclusion is drawn that QDs obtained have a structure of cubic zinc blende with an average particle size of 5.6 nm for the ZnSDS sample and 4.8 nm for ZnSBP. Transmission electron microscopy images show the presence of spherical aggregates of particles only for ZnSDS. FTIR data indicate the presence of sulfate ions in both samples; DS remains in the sample, facilitating the QD agglomeration, while BP is effectively washed out. From the optical diffuse reflectance spectra the band gap is estimated, which turns out to be larger than the expected one due to the presence of elemental sulfur in the samples and partial oxidation of the QD surface. The QD structure based on ZnS particles is also modeled in the work. The possibility to employ X-ray absorption near-edge spectroscopy for the verification of atomic structural parameters around zinc sites in QDs based on zinc sulfide is demonstrated.  相似文献   

16.
17.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

18.
Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots   总被引:1,自引:0,他引:1  
Wang GL  Dong YM  Yang HX  Li ZJ 《Talanta》2011,83(3):943-947
The importance of cysteine (Cys) in biological systems has stimulated a great deal of efforts in the development of analytical methods for the determination of this amino acid. In this work, a novel fluorescent probe for Cys based on citrate (Cit)-capped CdS quantum dots (QDs) is reported. The Cit-capped CdS QDs fluorescent probe offers good sensitivity and selectivity for detecting Cys. A good linear relationship was obtained from 1.0 × 10−8 mol L−1 to 5.0 × 10−5 mol L−1 for Cys. The detection limit was calculated as 5.4 × 10−9 mol L−1. The proposed method was applied to detect Cys in human urine samples, which showed satisfactory results. This assay is based on both the lability of Cit and the strong affinity of thiols to the surface of CdS QDs. The addition of Cys improved the passivation of the surface traps of CdS QDs and enhanced the fluorescence intensity.  相似文献   

19.
合成了氮掺杂石墨烯量子点,并基于茜素红-氮掺杂石墨烯量子点之间的相互作用形成氢键复合物,茜素红可以对所合成的氮掺杂石墨烯量子点产生明显的荧光猝灭作用(荧光关),氮掺杂石墨烯量子点荧光强度的变化(F0/F)与茜素红浓度(2.78~23.59 nmol/L)具有良好的线性关系,检出限为1.24 nmol/L;继续向该溶液中加入牛血清白蛋白,会使原已发生荧光猝灭的氮掺杂石墨烯量子点溶液的荧光发射强度得以恢复(荧光开),且荧光发射强度的恢复与牛血清白蛋白浓度(0.1~0.375 g/L)之间具有良好的线性关系,检出限为0.011 g/L。此外,该"关-开"荧光检测体系被用来定量分析人尿液中的牛血清白蛋白含量,方法已用于实际尿液样品的定量分析。  相似文献   

20.
A new, straightforward method for the phase-transfer of CdSe@ZnS quantum dots from non-polar solvents into water and short-chained alcohols using amphiphilic hyperbranched polyethylenimine of different molar weights is suggested and the experimental procedure is discussed as well as the chemical properties of the resulting polymer-derivatised nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号